
calculatoratoz.com

Transformer Circuit Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 35 Transformer Circuit Formulas

Transformer Circuit ©

1) Efficiency of Transformer
$\mathrm{fx}_{\mathrm{x}} \eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}$
Open Calculator
ex $0.888889=\frac{120 \mathrm{~kW}}{135 \mathrm{~kW}}$
2) EMF Induced in Primary Winding
$\mathrm{fx} \mathrm{E}_{1}=4.44 \cdot \mathrm{~N}_{1} \cdot \mathrm{f} \cdot \mathrm{A}_{\text {core }} \cdot \mathrm{B}_{\max }$
Open Calculator 〔
$\mathbf{e x} 13.32 \mathrm{~V}=4.44 \cdot 20 \cdot 500 \mathrm{~Hz} \cdot 2500 \mathrm{~cm}^{2} \cdot 0.0012 \mathrm{~T}$
3) EMF Induced in Secondary Winding
$\mathrm{fx} \mathrm{E}_{2}=4.44 \cdot \mathrm{~N}_{2} \cdot \mathrm{f} \cdot \mathrm{A}_{\text {core }} \cdot \mathrm{B}_{\max }$
Open Calculator
ex $15.984 \mathrm{~V}=4.44 \cdot 24 \cdot 500 \mathrm{~Hz} \cdot 2500 \mathrm{~cm}^{2} \cdot 0.0012 \mathrm{~T}$
4) Equivalent Impedance of Transformer from Primary Side
fx $\mathrm{Z}_{01}=\sqrt{\mathrm{R}_{01}^{2}+\mathrm{X}_{01}^{2}}$
Open Calculator
$\mathrm{ex} 36.00295 \Omega=\sqrt{(35.97 \Omega)^{2}+(1.54 \Omega)^{2}}$
5) Equivalent Impedance of Transformer from Secondary Side
$f \mathbf{x} Z_{02}=\sqrt{R_{02}^{2}+X_{02}^{2}}$
$\mathrm{ex} 51.83799 \Omega=\sqrt{(51.79 \Omega)^{2}+(2.23 \Omega)^{2}}$

Open Calculator
6) Equivalent Reactance of Transformer from Primary Side
$f \mathrm{x} \mathrm{X}_{01}=\mathrm{X}_{\mathrm{L} 1}+\mathrm{X}_{2}$
Open Calculator
ex $1.54 \Omega=0.88 \Omega+0.66 \Omega$
7) Equivalent Reactance of Transformer from Secondary Side
$\mathrm{fx}_{\mathrm{X}} \mathrm{X}_{02}=\mathrm{X}_{\mathrm{L} 2}+\mathrm{X}_{1}$
ex $2.23 \Omega=0.95 \Omega+1.28 \Omega$
8) Equivalent Resistance from Primary Side
f. $\mathrm{R}_{01}=\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{~K}^{2}}$
$\mathrm{ex} 35.96611 \Omega=17.98 \Omega+\frac{25.90 \Omega}{(1.2)^{2}}$
9) Equivalent Resistance from Secondary Side
$f \mathbf{f x} R_{02}=R_{2}+R_{1} \cdot K^{2}$
Open Calculator
ex $51.7912 \Omega=25.90 \Omega+17.98 \Omega \cdot(1.2)^{2}$
10) Frequency given EMF Induced in Primary Winding
$\mathrm{fx} \mathrm{f}=\frac{\mathrm{E}_{1}}{4.44 \cdot \mathrm{~N}_{1} \cdot \mathrm{~A}_{\text {core }} \cdot \mathrm{B}_{\max }}$
ex $495.4955 \mathrm{~Hz}=\frac{13.2 \mathrm{~V}}{4.44 \cdot 20 \cdot 2500 \mathrm{~cm}^{2} \cdot 0.0012 \mathrm{~T}}$
11) Frequency given EMF Induced in Secondary Winding
$\mathrm{fx} \mathrm{f}=\frac{\mathrm{E}_{2}}{4.44 \cdot \mathrm{~N}_{2} \cdot \mathrm{~A}_{\text {core }} \cdot \mathrm{B}_{\max }}$
Open Calculator
ex $495.4955 \mathrm{~Hz}=\frac{15.84 \mathrm{~V}}{4.44 \cdot 24 \cdot 2500 \mathrm{~cm}^{2} \cdot 0.0012 \mathrm{~T}}$
12) Impedance of Primary Winding
$f \mathbf{f x} \mathrm{Z}_{1}=\sqrt{\mathrm{R}_{1}^{2}+\mathrm{X}_{\mathrm{L} 1}^{2}}$
Open Calculator
$\mathrm{ex} 18.00152 \Omega=\sqrt{(17.98 \Omega)^{2}+(0.88 \Omega)^{2}}$
13) Impedance of Secondary Winding
$f \mathbf{f x} \mathrm{Z}_{2}=\sqrt{\mathrm{R}_{2}^{2}+\mathrm{X}_{\mathrm{L} 2}^{2}}$
Open Calculator
ex $25.91742 \Omega=\sqrt{(25.90 \Omega)^{2}+(0.95 \Omega)^{2}}$
14) P.U. Primary Resistance Drop
$f \mathrm{fx} \mathrm{R}_{\mathrm{pu}}=\frac{\mathrm{I}_{1} \cdot R_{01}}{\mathrm{E}_{1}}$

$$
\mathrm{ex} 34.335=\frac{12.6 \mathrm{~A} \cdot 35.97 \Omega}{13.2 \mathrm{~V}}
$$

15) Primary Current given Voltage Transformation Ratio

$$
f \mathrm{x} \mathrm{I}_{1}=\mathrm{I}_{2} \cdot \mathrm{~K}
$$

ex $12.6 \mathrm{~A}=10.5 \mathrm{~A} \cdot 1.2$
16) Primary Leakage Reactance

$$
f x X_{L 1}=\frac{X_{1}^{\prime}}{K^{2}}
$$

ex $0.888889 \Omega=\frac{1.28 \Omega}{(1.2)^{2}}$
17) Primary Voltage given Voltage Transformation Ratio
$f \mathrm{f} \mathrm{V}_{1}=\frac{\mathrm{V}_{2}}{\mathrm{~K}}$
Open Calculator
$\mathrm{ex} 240 \mathrm{~V}=\frac{288 \mathrm{~V}}{1.2}$
18) Primary Winding Resistance
$\mathrm{fx}_{\mathrm{R}} \mathrm{R}_{1}=\frac{\mathrm{R}_{1}^{\prime}}{\mathrm{K}^{2}}$
ex $17.97917 \Omega=\frac{25.89 \Omega}{(1.2)^{2}}$
19) Reactance of Primary Winding in Secondary
$f_{\mathrm{x}} \mathrm{X}_{1}{ }_{1}=\mathrm{X}_{\mathrm{L} 1} \cdot K^{2}$
Open Calculator
ex $1.2672 \Omega=0.88 \Omega \cdot(1.2)^{2}$
20) Reactance of Secondary Winding in Primary
$f \mathrm{XX} \mathrm{X}_{2}{ }_{2}=\frac{\mathrm{X}_{\mathrm{L} 2}}{\mathrm{~K}^{2}}$
Open Calculator
ex $0.659722 \Omega=\frac{0.95 \Omega}{(1.2)^{2}}$
21) Resistance of Primary Winding in Secondary
$f_{x} R^{\prime}=R_{1} \cdot K^{2}$
Open Calculator
ex $25.8912 \Omega=17.98 \Omega \cdot(1.2)^{2}$
22) Resistance of Secondary Winding in Primary
$f \mathrm{f} \mathrm{R}^{\prime}{ }_{2}=\frac{\mathrm{R}_{2}}{\mathrm{~K}^{2}}$
Open Calculator
ex $17.98611 \Omega=\frac{25.90 \Omega}{(1.2)^{2}}$
23) Secondary Current given Voltage Transformation Ratio
$\mathrm{fx} \mathrm{I}_{2}=\frac{\mathrm{I}_{1}}{\mathrm{~K}}$
ex $10.5 \mathrm{~A}=\frac{12.6 \mathrm{~A}}{1.2}$
24) Secondary Leakage Reactance
$\mathrm{fx} \mathrm{X}_{\mathrm{L} 2}=\frac{\mathrm{E}_{\text {self(2) }}}{\mathrm{I}_{2}}$
Open Calculator
ex $0.952381 \Omega=\frac{10 \mathrm{~V}}{10.5 \mathrm{~A}}$
25) Secondary Voltage given Voltage Transformation Ratio
$\mathrm{fx} \mathrm{V}_{2}=\mathrm{V}_{1} \cdot \mathrm{~K}$
Open Calculator
ex $288 \mathrm{~V}=240 \mathrm{~V} \cdot 1.2$

26) Secondary Winding Resistance $\sqrt{ }$

$f \times R_{2}=R^{\prime}{ }_{2} \cdot K^{2}$

$$
\text { ex } 25.9056 \Omega=17.99 \Omega \cdot(1.2)^{2}
$$

27) Terminal Voltage during No Load
$f \times V_{\text {no-load }}=\frac{\mathrm{V}_{1} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}}$
$\mathrm{ex} 288 \mathrm{~V}=\frac{240 \mathrm{~V} \cdot 24}{20}$

28) Transformation Ratio given Primary and Secondary Current

$\mathrm{fx} \mathrm{K}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$
Open Calculator
$\mathrm{ex} 1.2=\frac{12.6 \mathrm{~A}}{10.5 \mathrm{~A}}$
29) Transformation Ratio given Primary and Secondary Number of Turns
$\mathrm{fx} \mathrm{K}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}$
ex $1.2=\frac{24}{20}$
30) Transformation Ratio given Primary and Secondary Voltage
$\mathrm{f} \times \mathrm{K}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$\mathrm{ex} 1.2=\frac{288 \mathrm{~V}}{240 \mathrm{~V}}$
31) Transformation Ratio given Primary Leakage Reactance
$f \mathrm{fx}=\sqrt{\frac{\mathrm{X}_{1}^{\prime}}{\mathrm{X}_{\mathrm{L} 1}}}$
$\mathrm{ex} 1.206045=\sqrt{\frac{1.28 \Omega}{0.88 \Omega}}$
32) Transformation Ratio given Secondary Leakage Reactance
$f \mathrm{x} K=\sqrt{\frac{\mathrm{X}_{\mathrm{L} 2}}{\mathrm{X}^{\prime}{ }_{2}}}$
ex $1.199747=\sqrt{\frac{0.95 \Omega}{0.66 \Omega}}$

33) Voltage Regulation at Lagging PF

$$
\%=\left(\frac{\mathrm{I}_{2} \cdot \mathrm{R}_{2} \cdot \cos \left(\varphi_{2}\right)+\mathrm{I}_{2} \cdot \mathrm{X}_{2} \cdot \sin \left(\varphi_{2}\right)}{\mathrm{V}_{2}}\right) \cdot 100
$$

ex
$83.47157=\left(\frac{10.5 \mathrm{~A} \cdot 25.90 \Omega \cdot \cos \left(30^{\circ}\right)+10.5 \mathrm{~A} \cdot 0.93 \Omega \cdot \sin \left(30^{\circ}\right)}{288 \mathrm{~V}}\right) \cdot 100$
34) Voltage Regulation at Leading PF

$$
\%=\left(\frac{\mathrm{I}_{2} \cdot \mathrm{R}_{2} \cdot \cos \left(\varphi_{2}\right)-\mathrm{I}_{2} \cdot \mathrm{X}_{2} \cdot \sin \left(\varphi_{2}\right)}{\mathrm{V}_{2}}\right) \cdot 100
$$

ex
$80.08094=\left(\frac{10.5 \mathrm{~A} \cdot 25.90 \Omega \cdot \cos \left(30^{\circ}\right)-10.5 \mathrm{~A} \cdot 0.93 \Omega \cdot \sin \left(30^{\circ}\right)}{288 \mathrm{~V}}\right) \cdot 100$
35) Voltage Regulation at Unity PF
$f x \%=\left(\frac{\mathrm{I}_{2} \cdot \mathrm{R}_{2} \cdot \cos \left(\varphi_{2}\right)}{\mathrm{V}_{2}}\right) \cdot 100$
ex $81.77625=\left(\frac{10.5 \mathrm{~A} \cdot 25.90 \Omega \cdot \cos \left(30^{\circ}\right)}{288 \mathrm{~V}}\right) \cdot 100$

Variables Used

- \% Percentage Regulation of Transformer
- $\mathbf{A}_{\text {core }}$ Area of Core (Square Centimeter)
- $\mathbf{B}_{\text {max }}$ Maximum Flux Density (Tesla)
- \mathbf{E}_{1} EMF Induced in Primary (Volt)
- E_{2} EMF Induced in Secondary (Volt)
- $E_{\text {self(2) }}$ Self Induced EMF in Secondary (Volt)
- f Supply Frequency (Hertz)
- I_{1} Primary Current (Ampere)
- \mathbf{I}_{2} Secondary Current (Ampere)
- K Transformation Ratio
- $\mathbf{N}_{\mathbf{1}}$ Number of Turns in Primary
- \mathbf{N}_{2} Number of Turns in Secondary
- $\mathbf{P}_{\text {in }}$ Input Power (Kilowatt)
- $\mathbf{P}_{\text {out }}$ Output Power (Kilowatt)
- \mathbf{R}_{01} Equivalent Resistance from Primary (Ohm)
- \mathbf{R}_{02} Equivalent Resistance from Secondary (Ohm)
- \mathbf{R}_{1} Resistance of Primary (Ohm)
- \mathbf{R}_{1} Resistance of Primary in Secondary (Ohm)
- $\mathbf{R}_{\mathbf{2}}$ Resistance of Secondary (Ohm)
- $\mathbf{R}_{\mathbf{2}}$ Resistance of Secondary in Primary (Ohm)
- $\mathbf{R}_{\mathbf{p u}}$ P U Primary Resistance drop
- \mathbf{V}_{1} Primary Voltage (Volt)
- \mathbf{V}_{2} Secondary Voltage (Volt)
- $\mathbf{V}_{\text {no-load }}$ No Load Terminal Voltage (Volt)
- X_{01} Equivalent Reactance from Primary (Ohm)
- X_{02} Equivalent Reactance from Secondary (Ohm)
- X_{1} Reactance of Primary in Secondary (Ohm)
- \mathbf{X}_{2} Secondary Reactance (Ohm)
- $X^{\prime} \mathbf{2}_{2}$ Reactance of Secondary in Primary (Ohm)
- $\mathrm{X}_{\mathrm{L} 1}$ Primary Leakage Reactance (Ohm)
- $\mathrm{X}_{\mathrm{L} 2}$ Secondary Leakage Reactance (Ohm)
- \mathbf{Z}_{01} Equivalent Impedance from Primary (Ohm)
- \mathbf{Z}_{02} Equivalent Impedance from Secondary (Ohm)
- \mathbf{Z}_{1} Impedance of Primary (Ohm)
- \mathbf{Z}_{2} Impedance of Secondary (Ohm)
- $\boldsymbol{\eta}$ Efficiency
- φ_{2} Secondary Power Factor Angle (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sin, $\sin ($ Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Area in Square Centimeter (cm²)

Area Unit Conversion \preceq

- Measurement: Power in Kilowatt (kW)

Power Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Magnetic Flux Density in Tesla (T)

Magnetic Flux Density Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

Check other formula lists

- Mechanical Specifications Formulas
- Reactance Formulas
- Resistance Formulas
- Transformation Ratio Formulas
- Transformer Circuit Formulas
- Transformer Design Formulas
- Voltage \& EMF Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

