
calculatoratoz.com

unitsconverters.com

General Relation for Suspension Cables Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 General Relation for Suspension Cables Formulas

General Relation for Suspension Cables ©

Catenary

1) Catenary Length given Tension at any Point of Simple Cable with UDL
$f \times L_{\text {span }}=\sqrt{\frac{\left(T_{s}^{2}\right)-\left(T_{m}^{2}\right)}{q^{2}}}$
$20.99619 \mathrm{~m}=\sqrt{\frac{\left((210 \mathrm{kN})^{2}\right)-\left((4 \mathrm{kN})^{2}\right)}{(10.0 \mathrm{kN} / \mathrm{m})^{2}}}$
2) Horizontal Component given Tension at any Point of Simple Cable with UDL匹
$f x H=\sqrt{\left(T^{2}\right)-\left(\left(W^{\prime} \cdot s\right)^{2}\right)}$
Open Calculator
ex $520.3062 \mathrm{kN}=\sqrt{\left((600 \mathrm{kN})^{2}\right)-\left((6.0 \mathrm{kN} / \mathrm{m} \cdot 49.8 \mathrm{~m})^{2}\right)}$

3) Tension at any Point given Catenary Length of Simple Cable with UDL \boxed{G}

$f \mathrm{x} \mathrm{T}_{\mathrm{s}}=\sqrt{\left(\mathrm{T}_{\mathrm{m}}^{2}\right)+\left(\mathrm{q} \cdot \mathrm{L}_{\mathrm{span}}\right)^{2}}$
Open Calculator
ex $150.0533 \mathrm{kN}=\sqrt{\left((4 \mathrm{kN})^{2}\right)+(10.0 \mathrm{kN} / \mathrm{m} \cdot 15 \mathrm{~m})^{2}}$
4) UDL given Tension at any Point of Simple Cable with UDL
$f \mathbf{x} q=\sqrt{\frac{\left(T_{s}^{2}\right)-\left(T_{m}^{2}\right)}{L_{\text {span }}^{2}}}$
$\operatorname{ex} 13.99746 \mathrm{kN} / \mathrm{m}=\sqrt{\frac{\left((210 \mathrm{kN})^{2}\right)-\left((4 \mathrm{kN})^{2}\right)}{(15 \mathrm{~m})^{2}}}$

Parabola

5) Tension at Midspan given Parabolic Equation for Cable Slope
$f x T_{\text {mid }}=\frac{q \cdot x^{2}}{2 \cdot y}$
$\mathrm{ex} 196 \mathrm{kN}=\frac{10.0 \mathrm{kN} / \mathrm{m} \cdot(7 \mathrm{~m})^{2}}{2 \cdot 1.25}$
6) UDL given Parabolic Equation for Cable Slope
$f x q=\frac{y \cdot 2 \cdot T_{\text {mid }}}{(x)^{2}}$
ex $10 \mathrm{kN} / \mathrm{m}=\frac{1.25 \cdot 2 \cdot 196 \mathrm{kN}}{(7 \mathrm{~m})^{2}}$
7) UDL given Tension at Midspan for UDL on Parabolic Cable
$\mathrm{fx} \mathrm{q}=8 \cdot \mathrm{~T}_{\text {mid }} \cdot \frac{\mathrm{d}}{\mathrm{L}_{\text {span }}^{2}}$
Open Calculator
ex $10.0352 \mathrm{kN} / \mathrm{m}=8 \cdot 196 \mathrm{kN} \cdot \frac{1.44 \mathrm{~m}}{(15 \mathrm{~m})^{2}}$

Supports at Same Level ©

8) Horizontal Component of Cable Tension for UDL
$\mathrm{fx} \mathrm{T}_{\text {cable udl }}=\mathrm{q} \cdot \frac{\mathrm{L}_{\text {span }}^{2}}{8 \cdot \mathrm{f}}$
ex $56.25 \mathrm{kN}=10.0 \mathrm{kN} / \mathrm{m} \cdot \frac{(15 \mathrm{~m})^{2}}{8 \cdot 5 \mathrm{~m}}$
9) Maximum Reactions at Supports
$f \mathbf{f} \mathrm{~T}_{\max }=\left(\mathrm{q} \cdot \frac{\mathrm{L}_{\text {span }}}{2}\right) \cdot \sqrt{1+\left(\frac{\mathrm{L}_{\text {span }}^{2}}{16 \cdot \mathrm{f}^{2}}\right)}$
Open Calculator
ex $93.75 \mathrm{kN}=\left(10.0 \mathrm{kN} / \mathrm{m} \cdot \frac{15 \mathrm{~m}}{2}\right) \cdot \sqrt{1+\left(\frac{(15 \mathrm{~m})^{2}}{16 \cdot(5 \mathrm{~m})^{2}}\right)}$
10) Sag of Cable at Midway between supports given Horizontal Component of Cable Tension for UDL
> $f \mathbf{x} \mathrm{f}=\mathrm{q} \cdot \frac{\mathrm{L}_{\text {span }}}{8 \cdot \mathrm{~T}_{\text {cable udl }}}$

Open Calculator
ex $5 \mathrm{~m}=10.0 \mathrm{kN} / \mathrm{m} \cdot \frac{(15 \mathrm{~m})^{2}}{8 \cdot 56.25 \mathrm{kN}}$
11) Sag of Cable at Midway between supports given Maximum Reactions at Supports
$f \mathrm{x} f=\sqrt{\frac{\frac{L_{\text {span }}^{2}}{16}}{\left(\frac{2 \cdot T_{\max }}{\mathrm{q} \cdot \mathrm{L}_{\text {span }}}\right)^{2}-1}}$
Open Calculator
ex $5 \mathrm{~m}=\sqrt{\frac{\frac{(15 \mathrm{~m})^{2}}{16}}{\left(\frac{2 \cdot 93.75 \mathrm{kN}}{10.0 \mathrm{kN} / \mathrm{m} \cdot 15 \mathrm{~m}}\right)^{2}-1}}$
12) Span Length given Horizontal Component of Cable Tension for UDL
$f \times L_{\text {span }}=\sqrt{\frac{8 \cdot f \cdot T_{\text {cable udl }}}{q}}$
$\mathrm{ex} 15 \mathrm{~m}=\sqrt{\frac{8 \cdot 5 \mathrm{~m} \cdot 56.25 \mathrm{kN}}{10.0 \mathrm{kN} / \mathrm{m}}}$
13) Span Length given Vertical Reaction at Supports
$f \times L_{\text {span }}=V_{R} \cdot \frac{2}{q}$
ex $15 \mathrm{~m}=75 \mathrm{kN} \cdot \frac{2}{10.0 \mathrm{kN} / \mathrm{m}}$
14) UDL given Maximum Reactions at Supports
$f \mathbf{x} q=\frac{T_{\max }}{\left(\frac{L_{\text {span }}}{2}\right) \cdot \sqrt{1+\left(\frac{L_{\text {span }}^{2}}{16 \cdot \mathrm{f}^{2}}\right)}}$
Open Calculator 〔

$$
\frac{93.75 \mathrm{kN}}{\left(\frac{15 \mathrm{~m}}{2}\right) \cdot \sqrt{1+\left(\frac{(15 \mathrm{~m})^{2}}{16 \cdot(5 \mathrm{~m})^{2}}\right)}}
$$

15) UDL given Vertical Reaction at Supports
$\mathrm{fx} \mathrm{q}=2 \cdot \frac{\mathrm{~V}_{\mathrm{R}}}{\mathrm{L}_{\text {span }}}$

$$
\text { ex } 10 \mathrm{kN} / \mathrm{m}=2 \cdot \frac{75 \mathrm{kN}}{15 \mathrm{~m}}
$$

16) Uniformly distributed Load given Horizontal Component of Cable Tension for UDL
$f_{x} q=\frac{T_{\text {cable udl }} \cdot 8 \cdot f}{\left(L_{\text {span }}\right)^{2}}$
$\mathrm{ex} 10 \mathrm{kN} / \mathrm{m}=\frac{56.25 \mathrm{kN} \cdot 8 \cdot 5 \mathrm{~m}}{(15 \mathrm{~m})^{2}}$

17) Vertical Reaction at Supports

$f \mathrm{f} \mathrm{V}_{\mathrm{R}}=\mathrm{q} \cdot \frac{\mathrm{L}_{\text {span }}}{2}$
ex $75 \mathrm{kN}=10.0 \mathrm{kN} / \mathrm{m} \cdot \frac{15 \mathrm{~m}}{2}$

Variables Used

- d Maximum Sag (Meter)
- f Sag of Cable at Midway between Supports (Meter)
- H Horizontal Tension (Kilonewton)
- $L_{\text {span }}$ Cable Span (Meter)
- q Uniformly Distributed Load (Kilonewton per Meter)
- s Catenary Length (Meter)
- T Cable Tension (Kilonewton)
- $\mathbf{T}_{\text {cable udl }}$ Cable Tension for UDL (Kilonewton)
- $\mathbf{T}_{\mathbf{m}}$ Midspan Tension (Kilonewton)
- $\mathrm{T}_{\text {max }}$ Maximum Value of Tension (Kilonewton)
- $\mathbf{T}_{\text {mid }}$ Tension at Midspan (Kilonewton)
- $\mathbf{T}_{\mathbf{s}}$ Tension at Supports (Kilonewton)
- $\mathbf{V}_{\mathbf{R}}$ Vertical Reaction at Supports (Kilonewton)
- W' Total Load per Unit Length (Kilonewton per Meter)
- X Distance from Midpoint of Cable (Meter)
- y Parabolic Equation of Cable Slope

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m)

Surface Tension Unit Conversion

Check other formula lists

- Cable System, Sag and Drainage - Parabolic Cable Tension and on Bridges Formulas Length Formulas $\boxed{\Omega}$
- General Relation for Suspension Cables Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

