

Induction Motor Circuit Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 28 Induction Motor Circuit Formulas

Induction Motor Circuit (

1) Armature Current given Power in Induction Motor 🛂

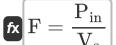
 $I_{
m a} = rac{{
m P}_{
m out}}{{
m V}_{
m a}}$

Open Calculator 2

2) Breakdown Slip of Induction Motor

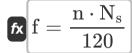
Open Calculator

3) Field Current using Load Current in Induction Motor 🗲


fx $m [I_f = I_a - I_L]$

Open Calculator

0.75A = 3.7A - 2.95A


4) Force by Linear Induction Motor

Open Calculator

$$0.296296 ext{N} = rac{40 ext{W}}{135 ext{m/s}}$$

5) Frequency given Number of Poles in Induction Motor

Open Calculator

$$oxed{\mathbf{ex}} 54.66371 \mathrm{Hz} = rac{4 \cdot 15660 \mathrm{rev/min}}{120}$$

fx $m P_m = (1-s) \cdot P_{in}$

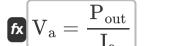
6) Gross Mechanical Power in Induction Motor 🔽

$$\mathbf{ex} \ 32.4 \mathrm{W} = (1-0.19) \cdot 40 \mathrm{W}$$

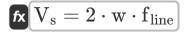
Open Calculator

fx $\mathrm{E_{i}} = \mathrm{V_{s} \cdot B \cdot l}$

Open Calculator


$$4.8654 \mathrm{V} = 135 \mathrm{m/s} \cdot 0.68 \mathrm{T} \cdot 53 \mathrm{mm}$$

7) Induced EMF given Linear Synchronous Speed 🖸



8) Induced Voltage given Power 🗹

Open Calculator

9) Linear Synchronous Speed 🖸

Open Calculator

$$\texttt{ex} \ 135 \text{m/s} = 2 \cdot 150 \text{mm} \cdot 450 \text{Hz}$$

10) Load Current in Induction Motor

Open Calculator

Open Calculator 2

40.44 : 5 : 7 (3)

$$au_{
m run} = rac{3\cdot {
m E}^2}{4\cdot \pi \cdot {
m N_s}\cdot {
m X}}$$

[2.95A = 3.7A - 0.75A]

$$ag{0.181512 ext{N*m}} = rac{3\cdot(305.8 ext{V})^2}{4\cdot\pi\cdot15660 ext{rev/min}\cdot75\Omega}$$

12) Motor Speed given Efficiency in Induction Motor

fx $N_{m}=\eta\cdot N_{s}$

Open Calculator

 $= 14094 \mathrm{rev/min} = 0.90 \cdot 15660 \mathrm{rev/min}$

13) Pitch Factor in Induction Motor

 $K_{
m p}=\cos\!\left(rac{ heta}{2}
ight)$

Open Calculator

 $\boxed{\textbf{ex} \left[0.707107 = \cos\!\left(\frac{90°}{2}\right)\right]}$

14) Power Converted in Induction Motor

 $extbf{P}_{ ext{conv}} = ext{P}_{ ext{ag}} - ext{P}_{ ext{r(cu)}}$

Open Calculator

 $10.45 \mathrm{W} = 12 \mathrm{W} - 1.55 \mathrm{W}$

15) Reactance given Slip at Maximum Torque

 $X = \frac{R}{s}$

Open Calculator

 $\boxed{75\Omega = \frac{14.25\Omega}{0.19}}$

16) Resistance given Slip at Maximum Torque 🗗

fx $R = s \cdot X$

Open Calculator

 $\textbf{ex} \ 14.25\Omega = 0.19 \cdot 75\Omega$

fx $P_{
m r(cu)} = {
m s} \cdot P_{
m in(r)}$

17) Rotor Copper Loss given Input Rotor Power

17) Rotor Copper Loss given input Ro

Open Calculator

 $= 1.482W = 0.19 \cdot 7.8W$

18) Rotor Copper Loss in Induction Motor

 $extbf{F}_{ ext{r(cu)}} = 3 \cdot ext{I}_{ ext{r}}^2 \cdot ext{R}_{ ext{r}}$

Open Calculator

 $\mathbf{ex} \Big[1.55952 \mathrm{W} = 3 \cdot (0.285 \mathrm{A})^2 \cdot 6.4 \Omega \Big]$

19) Rotor Current in Induction Motor

 $\mathbf{K} \mathbf{I_r} = rac{\mathbf{s} \cdot \mathbf{E_i}}{\sqrt{\mathbf{R_{r(ph)}^2 + \left(\mathbf{s} \cdot \mathbf{X_{r(ph)}}
ight)^2}}}$

Open Calculator

ex $0.218591 \mathrm{A} = rac{0.19 \cdot 67.3 \mathrm{V}}{\sqrt{\left(56\Omega\right)^2 + \left(0.19 \cdot 89\Omega\right)^2}}$

20) Rotor Efficiency in Induction Motor

Open Calculator

 $oxed{ex} 0.916347 = rac{14350 \mathrm{rev/min}}{15660 \mathrm{rev/min}}$

21) Rotor Frequency given Supply Frequency 🛂

fx $[f_r = s \cdot f]$

 $\mathbf{ex} \ 10.374 \mathrm{Hz} = 0.19 \cdot 54.6 \mathrm{Hz}$

22) Rotor Input Power in Induction Motor 🗗

fx ${ m P_{in(r)}}={ m P_{in}}-{ m P_{sl}}$

Open Calculator

Open Calculator

Open Calculator

7.8W = 40W - 32.2W

23) Slip given Efficiency in Induction Motor 🖸

fx $|\mathbf{s}=1-\eta|$

0.1 = 1 - 0.90

24) Starting Torque of Induction Motor

 $au = rac{3 \cdot ext{E}^2 \cdot ext{R}}{2 \cdot \pi \cdot ext{N}_{ ext{s}} \cdot \left(ext{R}^2 + ext{X}^2
ight)}$

Open Calculator 🖸

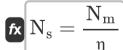
 $= \frac{3 \cdot \left(305.8 \text{V}\right)^2 \cdot 14.25 \Omega}{2 \cdot \pi \cdot 15660 \text{rev/min} \cdot \left(\left(14.25 \Omega\right)^2 + \left(75 \Omega\right)^2\right)}$

25) Stator Copper Loss in Induction Motor

 $\left| \mathbf{F}_{\mathrm{s(cu)}} = 3 \cdot \mathrm{I_{s}^{2}} \cdot \mathrm{R_{s}}
ight|$

Open Calculator

 $\mathbf{ex} \left[13.98037 \mathrm{W} = 3 \cdot (0.85 \mathrm{A})^2 \cdot 6.45 \Omega \right]$


26) Synchronous Speed in Induction Motor

 $N_{
m s} = rac{120 \cdot f}{n}$

Open Calculator

 $\boxed{\textbf{ex}} \ 15641.75 \text{rev/min} = \frac{120 \cdot 54.6 \text{Hz}}{4}$

27) Synchronous Speed of Induction Motor given Efficiency

Open Calculator

= $15944.44 ext{rev/min} = rac{14350 ext{rev/min}}{0.90}$

28) Torque of Induction Motor under Running Condition 🗗

Open Calculator 2

$$au = rac{3 \cdot \mathrm{s} \cdot \mathrm{E}^2 \cdot \mathrm{R}}{2 \cdot \pi \cdot \mathrm{N_s} \cdot \left(\mathrm{R}^2 + \left(\mathrm{X}^2 \cdot \mathrm{s}
ight)
ight)}$$

$$0.057962 \mathrm{N^*m} = rac{3 \cdot 0.19 \cdot \left(305.8 \mathrm{V}
ight)^2 \cdot 14.25 \Omega}{2 \cdot \pi \cdot 15660 \mathrm{rev/min} \cdot \left(\left(14.25 \Omega
ight)^2 + \left(\left(75 \Omega
ight)^2 \cdot 0.19
ight)
ight)}$$

Variables Used

- B Magnetic Flux Density (Tesla)
- **E** EMF (Volt)
- Ei Induced EMF (Volt)
- **f** Frequency (Hertz)
- F Force (Newton)
- fline Line Frequency (Hertz)
- **f**_r Rotor Frequency (Hertz)
- **l**_a Armature Current (Ampere)
- If Field Current (Ampere)
- I_I Load Current (Ampere)
- I_r Rotor Current (Ampere)
- Is Stator Current (Ampere)
- K_p Pitch Factor
- Length of Conductor (Millimeter)
- n Number of Poles
- N_m Motor Speed (Revolution per Minute)
- N_S Synchronous Speed (Revolution per Minute)
- Pag Air Gap Power (Watt)
- P_{conv} Converted Power (Watt)
- Pin Input Power (Watt)
- Pin(r) Rotor Input Power (Watt)

- P_m Mechanical Power (Watt)
- Pout Output Power (Watt)
- P_{r(cu)} Rotor Copper Loss (Watt)
- P_{s(cu)} Stator Copper Loss (Watt)
- P_{SI} Stator Losses (Watt)
- R Resistance (Ohm)
- R_r Rotor Resistance (Ohm)
- R_{r(ph)} Rotor Resistance per Phase (Ohm)
- R_s Stator Resistance (Ohm)
- S Slip
- **V**_a Armature Voltage (Volt)
- V_s Linear Synchronous Speed (Meter per Second)
- **W** Pole Pitch Width (Millimeter)
- X Reactance (Ohm)
- X_{r(ph)} Rotor Reactance per Phase (Ohm)
- **η** Efficiency
- **0** Short Pitched Angle (Degree)
- T Torque (Newton Meter)
- Trun Running Torque (Newton Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Electric Current in Ampere (A)

 Electric Current Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Magnetic Flux Density in Tesla (T)
 Magnetic Flux Density Unit Conversion

- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min)

 Angular Velocity Unit Conversion
- Measurement: Torque in Newton Meter (N*m)

 Torque Unit Conversion

Check other formula lists

Induction Motor Circuit
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/15/2024 | 7:36:44 AM UTC

Please leave your feedback here...

