
calculatoratoz.com

Turning Radius Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Turning Radius Formulas

Turning Radius ©

1) Deceleration given Sight Distance
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{V}_{\text {Turning Speed }}^{2}}{25.5 \cdot \mathrm{SD}}$
Open Calculator
$\mathrm{ex} 32.67974 \mathrm{~m}^{2} / \mathrm{s}=\frac{(50 \mathrm{~km} / \mathrm{h})^{2}}{25.5 \cdot 3 \mathrm{~m}}$
2) Deflection Angle of Entrance Curve
$\mathrm{fx} \mathrm{D}_{1}=\frac{180 \cdot \mathrm{~L}_{1}}{\pi \cdot \mathrm{R}_{\text {Taxiway }}}$
Open Calculator
ex $21.72915 \mathrm{rad}=\frac{180 \cdot 20.1 \mathrm{~m}}{\pi \cdot 53 \mathrm{~m}}$
3) Deflection Angle of Entrance Curve given Deflection of Angle at Central Curve \longleftarrow
fx $\mathrm{D}_{1}=35-\mathrm{D}_{2}$
Open Calculator
ex $21 \mathrm{rad}=35-14 \mathrm{rad}$
4) Deflection of Angle at Central Curve
fx $D_{2}=35-D_{1}$
Open Calculator
ex $14 \mathrm{rad}=35-21 \mathrm{rad}$
5) Deflection of Angle at Central Curve when Length of Central Curve is considered
$\mathrm{fx}_{\mathrm{x}} \mathrm{D}_{2}=\frac{180 \cdot \mathrm{~L} 2}{\pi \cdot \mathrm{R} 2}$
Open Calculator ©
ex $14.09926 \mathrm{rad}=\frac{180 \cdot 25.1 \mathrm{~m}}{\pi \cdot 102 \mathrm{~m}}$
6) Distance between Midway Points of Main Gears and Edge of Taxiway Pavements
$\mathrm{D}_{\text {Midway }}=\left(0.5 \cdot \mathrm{~T}_{\text {Width }}\right)-\left(0.388 \cdot \frac{\mathrm{~W}^{2}}{\mathrm{R}_{\text {Taxiway }}}\right)$
ex $17.78968 \mathrm{~m}=(0.5 \cdot 45.1 \mathrm{~m})-\left(0.388 \cdot \frac{(25.5 \mathrm{~m})^{2}}{53 \mathrm{~m}}\right)$
7) Horonjeff Equation for Turning Radius of Taxiway
$\mathrm{fx} \mathrm{R}_{\text {Taxiway }}=\frac{0.388 \cdot \mathrm{~W}^{2}}{\left(0.5 \cdot \mathrm{~T}_{\text {Width }}\right)-\mathrm{D}_{\text {Midway }}}$
Open Calculator 〔
$\operatorname{ex} 52.89245 \mathrm{~m}=\frac{0.388 \cdot(25.5 \mathrm{~m})^{2}}{(0.5 \cdot 45.1 \mathrm{~m})-17.78 \mathrm{~m}}$

8) Length of Central Curve

$\mathrm{fx} \mathrm{L} 2=\frac{\pi \cdot \mathrm{R} 2 \cdot \mathrm{D}_{2}}{180}$
Open Calculator
ex $24.9233 \mathrm{~m}=\frac{\pi \cdot 102 \mathrm{~m} \cdot 14 \mathrm{rad}}{180}$
9) Length of Entrance Curve when Deflection Angle of Entrance Curve is considered

$$
\begin{aligned}
& f \times L_{1}=\frac{\pi \cdot \mathrm{D}_{1} \cdot \mathrm{R}_{\text {Taxiway }}}{180} \\
& \text { ex } 19.42551 \mathrm{~m}=\frac{\pi \cdot 21 \mathrm{rad} \cdot 53 \mathrm{~m}}{180}
\end{aligned}
$$

Open Calculator
10) Radius of Central Curve given Length of Central Curve
$\mathrm{fx} \mathrm{R} 2=\frac{180 \cdot \mathrm{~L} 2}{\pi \cdot \mathrm{D}_{2}}$
$\mathrm{ex} 102.7231 \mathrm{~m}=\frac{180 \cdot 25.1 \mathrm{~m}}{\pi \cdot 14 \mathrm{rad}}$

11) Radius of Curve when Velocity in Turn

$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\text {Taxiway }}=\left(\frac{\mathrm{V}_{\text {Turning Speed }}}{4.1120}\right)^{2}$

Open Calculator

$\mathrm{ex} 147.8542 \mathrm{~m}=\left(\frac{50 \mathrm{~km} / \mathrm{h}}{4.1120}\right)^{2}$
12) Radius of Entrance Curve when Deflection Angle of Entrance Curve is considered
$\mathrm{fx} \mathrm{R}_{\text {Taxiway }}=\frac{180 \cdot \mathrm{~L}_{1}}{\pi \cdot \mathrm{D}_{1}}$
ex $54.84025 \mathrm{~m}=\frac{180 \cdot 20.1 \mathrm{~m}}{\pi \cdot 21 \mathrm{rad}}$

13) Sight Distance

14) Taxiway Width given Turning Radius
$\mathbf{f x}^{\mathrm{X}} \mathrm{T}_{\text {Width }}=\frac{\left(\frac{0.388 \cdot \mathrm{~W}^{2}}{\mathrm{R}_{\text {Taxiway }}}\right)+\mathrm{D}_{\text {Midway }}}{0.5}$
$\mathbf{e x} 45.08064 \mathrm{~m}=\frac{\left(\frac{0.388 \cdot(25.5 \mathrm{~m})^{2}}{53 \mathrm{~m}}\right)+17.78 \mathrm{~m}}{0.5}$
15) Turning Radius
$f \times \mathrm{R}_{\text {Taxiway }}=\frac{\mathrm{V}_{\text {Turning Speed }}^{2}}{125 \cdot \mu_{\text {Friction }}}$
Open Calculator ©
ex $7.716049 \mathrm{~m}=\frac{(50 \mathrm{~km} / \mathrm{h})^{2}}{125 \cdot 0.2}$
16) Turning Speed of Aircraft given Radius of Curve
$f \times \sqrt{V_{\text {Turning Speed }}=\sqrt{R_{\text {Taxiway }} \cdot \mu_{\text {Friction }} \cdot 125}}$
ex $36.40055 \mathrm{~km} / \mathrm{h}=\sqrt{53 \mathrm{~m} \cdot 0.2 \cdot 125}$
17) Turning Speed of Aircraft given Sight Distance
$f_{\mathrm{x}} \mathrm{V}_{\text {Turning Speed }}=\sqrt{25.5 \cdot \mathrm{~d} \cdot \mathrm{SD}}$
ex $49.93896 \mathrm{~km} / \mathrm{h}=\sqrt{25.5 \cdot 32.6 \mathrm{~m}^{2} / \mathrm{s} \cdot 3 \mathrm{~m}}$

Turning Radius Formulas...

18) Velocity in Turn

$\mathrm{fx}_{\mathrm{x}} \mathrm{V}_{\text {Turning Speed }}=4.1120 \cdot \mathrm{R}_{\text {Taxiway }}^{0.5}$
ex $107.7689 \mathrm{~km} / \mathrm{h}=4.1120 \cdot(53 \mathrm{~m})^{0.5}$
19) Wheelbase given Turning Radius
fx

$$
\mathrm{W}=\sqrt{\frac{\left(\mathrm{R}_{\text {Taxiway }} \cdot\left(0.5 \cdot \mathrm{~T}_{\text {Width }}\right)\right)-\mathrm{D}_{\text {Midway }}}{0.388}}
$$

ex $55.08592 \mathrm{~m}=\sqrt{\frac{(53 \mathrm{~m} \cdot(0.5 \cdot 45.1 \mathrm{~m}))-17.78 \mathrm{~m}}{0.388}}$

Variables Used

- d Deceleration (Square Meter per Second)
- \mathbf{D}_{1} Deflection Angle of Entrance Curve (Radian)
- $\mathbf{D}_{\mathbf{2}}$ Deflection Angle of Central Curve (Radian)
- $\mathbf{D}_{\text {Midway }}$ Distance between Midway Points (Meter)
- L_{1} Length of Entrance Curve (Meter)
- L2 Length of Central Curve (Meter)
- $\mathbf{R}_{\text {Taxiway }}$ Radius of Curve for Taxiway (Meter)
- R2 Radius of Central Curve (Meter)
- SD Sight Distance (Meter)
- TWidth Taxiway Width (Meter)
- $\mathbf{V}_{\text {Turning }}$ Speed Turning Speed of Aircraft (Kilometer per Hour)
- W Wheelbase (Meter)
- $\mu_{\text {Friction }}$ Coefficient of Friction

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h) Speed Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Kinematic Viscosity Unit Conversion

Check other formula lists

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

