

Turning Radius Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 19 Turning Radius Formulas

Turning Radius 🕑

fx
$${
m D}_1=35-{
m D}_2$$
 Open Calculator $ar{ar{C}}$

fx
$$\mathrm{D}_2 = 35 - \mathrm{D}_1$$

ex 14rad = 35 - 21rad

5) Deflection of Angle at Central Curve when Length of Central Curve is considered

fx
$$D_2 = rac{180 \cdot L2}{\pi \cdot R2}$$

$$14.09926 \text{rad} = \frac{180 \cdot 25.1 \text{m}}{\pi \cdot 102 \text{m}}$$

6) Distance between Midway Points of Main Gears and Edge of Taxiway Pavements

$$fx \qquad \qquad \textbf{Open Calculator Constraints} \\ D_{Midway} = (0.5 \cdot T_{Width}) - \left(0.388 \cdot \frac{W^2}{R_{Taxiway}}\right) \\ \textbf{ex} \qquad \qquad 17.78968m = (0.5 \cdot 45.1m) - \left(0.388 \cdot \frac{(25.5m)^2}{53m}\right) \\ \end{cases}$$

Open Calculator

7) Horonjeff Equation for Turning Radius of Taxiway 🕑

$$\label{eq:RTaxiway} \begin{split} & \mathbf{K} \mathbf{R}_{\rm Taxiway} = \frac{0.388 \cdot W^2}{(0.5 \cdot {\rm T}_{\rm Width}) - {\rm D}_{\rm Midway}} \\ \\ & \mathbf{K} \\ \\ & \mathbf{S} \\ \\ \\ & \mathbf{S} \\ \\ \\ & \mathbf{S} \\ \\ \\ &$$

8) Length of Central Curve

fx
$$\mathrm{L2} = rac{\pi \cdot \mathrm{R2} \cdot \mathrm{D}_2}{180}$$

ex
$$24.9233m = \frac{\pi \cdot 102m \cdot 14rad}{180}$$

9) Length of Entrance Curve when Deflection Angle of Entrance Curve is considered

fx
$$L_1 = \frac{\pi \cdot D_1 \cdot R_{\text{Taxiway}}}{180}$$

$$ex 19.42551m = \frac{\pi \cdot 21 rad \cdot 53m}{180}$$

10) Radius of Central Curve given Length of Central Curve

fx
$$R2 = \frac{180 \cdot L2}{\pi \cdot D_2}$$
 Open Calculator C
ex $102.7231m = \frac{180 \cdot 25.1m}{\pi \cdot 14rad}$

Open Calculator

11) Radius of Curve when Velocity in Turn 🕑

fx $R_{\text{Taxiway}} = \left(\frac{V_{\text{Turning Speed}}}{4.1120}\right)^2$ ex $147.8542 \text{m} = \left(\frac{50 \text{km/h}}{4.1120}\right)^2$

12) Radius of Entrance Curve when Deflection Angle of Entrance Curve is considered

14) Taxiway Width given Turning Radius 🕑

15) Turning Radius 🕑

$$f_{X} R_{Taxiway} = \frac{V_{Turning Speed}^{2}}{125 \cdot \mu_{Friction}}$$

$$e_{X} 7.716049m = \frac{(50 \text{km/h})^{2}}{125 \cdot 0.2}$$

$$f_{X} V_{Turning Speed} = \sqrt{R_{Taxiway} \cdot \mu_{Friction} \cdot 125}$$

$$Open Calculator \textcircled{P}$$

ex $36.40055 {
m km/h} = \sqrt{53 {
m m} \cdot 0.2 \cdot 125}$

17) Turning Speed of Aircraft given Sight Distance 🕑

fx
$$V_{
m Turning\,Speed} = \sqrt{25.5 \cdot {
m d} \cdot {
m SD}}$$

$$m 49.93896 km/h = \sqrt{25.5 \cdot 32.6 m^2/s \cdot 3m}$$

ex

Open Calculator

18) Velocity in Turn 🕑

fx
$$V_{Turning Speed} = 4.1120 \cdot R_{Taxiway}^{0.5}$$

 $\begin{array}{|c|c|c|c|c|c|c|} \hline \text{ex} & 107.7689 \text{km/h} = 4.1120 \cdot {(53\text{m})}^{0.5} \end{array}$

19) Wheelbase given Turning Radius 🕑

Variables Used

- **d** Deceleration (Square Meter per Second)
- **D₁** Deflection Angle of Entrance Curve (*Radian*)
- **D**₂ Deflection Angle of Central Curve (*Radian*)
- D_{Midway} Distance between Midway Points (Meter)
- L₁ Length of Entrance Curve (*Meter*)
- L2 Length of Central Curve (Meter)
- RTaxiway Radius of Curve for Taxiway (Meter)
- R2 Radius of Central Curve (Meter)
- SD Sight Distance (Meter)
- Twidth Taxiway Width (Meter)
- VTurning Speed Turning Speed of Aircraft (Kilometer per Hour)
- W Wheelbase (Meter)
- **µ**Friction Coefficient of Friction

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: **sqrt**, sqrt(Number) Square root function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Kilometer per Hour (km/h) Speed Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s) Kinematic Viscosity Unit Conversion

Check other formula lists

Taxiway Design Formulas
 Turning Radius Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/19/2024 | 4:37:42 PM UTC

Please leave your feedback here...