目

calculatoratoz.com

Sight Distances of Highway Formulas

Calculators!

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Sight Distances of Highway Formulas

Sight Distances of Highway 巴

Coefficient of Friction

1) Coefficient of Friction given Stopping Sight Distance
$f \mathrm{fx}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot\left(\mathrm{SSD}-\left(\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}\right)\right)}$
$\operatorname{ex} 0.047595=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot(160 \mathrm{~m}-(11.11 \mathrm{~m} / \mathrm{s} \cdot 2.5 \mathrm{~s}))}$
2) Coefficient of Longitudinal Friction given Breaking Distance
$\mathrm{fx} \mathrm{f}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{BD}}$
ex $0.157332=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 40 \mathrm{~m}}$

OSD

3) Acceleration of Vehicle given Total Time of Travel in Overtaking Sight distance
$f x a=\frac{4 \cdot s}{T^{2}}$
ex $0.900723 \mathrm{~m} / \mathrm{s}^{2}=\frac{4 \cdot 13.7 \mathrm{~m}}{(7.8 \mathrm{~s})^{2}}$

4) Minimum Overtaking Distance

$f \times D=3 \cdot O S D$

ex $834 \mathrm{~m}=3 \cdot 278 \mathrm{~m}$
5) Minimum Spacing between Vehicles during Overtaking
$\mathrm{fx} \mathrm{s}=\left(0.7 \cdot \mathrm{~V}_{\mathrm{b}}+6\right)$
ex $13.777 \mathrm{~m}=(0.7 \cdot 11.11 \mathrm{~m} / \mathrm{s}+6)$
6) Overtaking Sight Distance
$\mathrm{fx}_{\mathrm{x}} \mathrm{OSD}=\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}_{\mathrm{r}}+\mathrm{V}_{\mathrm{b}} \cdot \mathrm{T}+2 \cdot\left(0.7 \cdot \mathrm{~V}_{\mathrm{b}}+\mathrm{l}\right)+\mathrm{V} \cdot \mathrm{T}$

ex

$276.832 \mathrm{~m}=11.11 \mathrm{~m} / \mathrm{s} \cdot 2 \mathrm{~s}+11.11 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{~s}+2 \cdot(0.7 \cdot 11.11 \mathrm{~m} / \mathrm{s}+6 \mathrm{~m})+18 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{~s}$
7) Overtaking Sight Distance given Minimum Overtaking Distance
$f \times \mathrm{OSD}=\frac{\mathrm{D}}{3}$
ex $278 \mathrm{~m}=\frac{834 \mathrm{~m}}{3}$
8) Reaction Time of Driver using OSD
$f \mathrm{x} \mathrm{t}_{\mathrm{r}}=\frac{\mathrm{OSD}-\mathrm{V}_{\mathrm{b}} \cdot \mathrm{T}-1.4 \cdot \mathrm{~V}_{\mathrm{b}}-2 \cdot \mathrm{l}-\mathrm{V} \cdot \mathrm{T}}{\mathrm{V}_{\mathrm{b}}}$
$\operatorname{ex} 2.105131 \mathrm{~s}=\frac{278 \mathrm{~m}-11.11 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{~s}-1.4 \cdot 11.11 \mathrm{~m} / \mathrm{s}-2 \cdot 6 \mathrm{~m}-18 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{~s}}{11.11 \mathrm{~m} / \mathrm{s}}$
9) Spacing between Vehicles given Total Time of Travel in Overtaking Sight distance
$\mathrm{fx} \mathrm{s}=\frac{\left(\mathrm{T}^{2}\right) \cdot \mathrm{a}}{4}$
ex $13.689 \mathrm{~m}=\frac{\left((7.8 \mathrm{~s})^{2}\right) \cdot 0.9 \mathrm{~m} / \mathrm{s}^{2}}{4}$
10) Speed of Slow Vehicle using OSD
$f \mathrm{f} \mathrm{V}_{\mathrm{b}}=\frac{\mathrm{OSD}-\mathrm{V} \cdot \mathrm{T}-2 \cdot \mathrm{l}}{\mathrm{t}_{\mathrm{r}}+\mathrm{T}+1.4}$
ex $11.21429 \mathrm{~m} / \mathrm{s}=\frac{278 \mathrm{~m}-18 \mathrm{~m} / \mathrm{s} \cdot 7.8 \mathrm{~s}-2 \cdot 6 \mathrm{~m}}{2 \mathrm{~s}+7.8 \mathrm{~s}+1.4}$
11) Total Time of Travel in Overtaking Sight distance
$f \mathrm{x} T=\sqrt{4 \cdot \frac{\mathrm{~s}}{\mathrm{a}}}$
Open Calculator
$\mathrm{ex} 7.803133 \mathrm{~s}=\sqrt{4 \cdot \frac{13.7 \mathrm{~m}}{0.9 \mathrm{~m} / \mathrm{s}^{2}}}$
12) Velocity of Overtaking Vehicle for Forward Moving Vehicle Velocity in meter per second E
$\mathrm{fx} \mathrm{V}=\mathrm{V}_{\mathrm{b}}+4.5$
ex $15.61 \mathrm{~m} / \mathrm{s}=11.11 \mathrm{~m} / \mathrm{s}+4.5$

SSD

13) Intermediate Sight Distance
f. ISD $=2 \cdot \mathrm{SSD}$
ex $320 \mathrm{~m}=2 \cdot 160 \mathrm{~m}$
14) Stopping Sight Distance
$f x \operatorname{SSD}=\mathrm{BD}+\mathrm{LD}$
Open Calculator ©
ex $67.7 \mathrm{~m}=40 \mathrm{~m}+27.7 \mathrm{~m}$
15) Stopping Sight Distance for Velocity in meter per second
$f \mathrm{fxSD}=\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}+\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}}$
Open Calculator
ex $69.73024 \mathrm{~m}=11.11 \mathrm{~m} / \mathrm{s} \cdot 2.5 \mathrm{~s}+\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15}$
16) Stopping Sight Distance given Intermediate Sight Distance
$\mathrm{fx} \mathrm{SSD}=\frac{\mathrm{ISD}}{2}$
ex $160 \mathrm{~m}=\frac{320 \mathrm{~m}}{2}$
17) Stopping Sight Distance on Level Ground with Breaking Efficiency
$f \mathrm{fxSD}=\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}+\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f} \cdot \eta_{\mathrm{x}}}$
ex $80.21905 \mathrm{~m}=11.11 \mathrm{~m} / \mathrm{s} \cdot 2.5 \mathrm{~s}+\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15 \cdot 0.8}$
18) Stopping Sight Distance on Upward Inclined Surface
$f \mathrm{fx} \mathrm{SD}=\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}+\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}+\Delta \mathrm{H}}$
ex $34.65451 \mathrm{~m}=11.11 \mathrm{~m} / \mathrm{s} \cdot 2.5 \mathrm{~s}+\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15+15 \mathrm{~m}}$
19) Total Reaction Time given Stopping Sight Distance
$f \times t=\frac{S S D-\frac{V_{b}^{2}}{2 \cdot(\mathrm{~g} \cdot \mathrm{f}}}{\mathrm{V}_{\mathrm{b}}}$
$\operatorname{ex} 10.62509 \mathrm{~s}=\frac{160 \mathrm{~m}-\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15}}{11.11 \mathrm{~m} / \mathrm{s}}$

Braking Distance

20) Braking Distance on Inclined Surface
$f \times \mathrm{BD}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}+0.01 \cdot \Delta \mathrm{H}}$
Open Calculator
ex $39.91989 \mathrm{~m}=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15+0.01 \cdot 15 \mathrm{~m}}$
21) Braking Distance on Inclined Surface with Efficiency
$\mathrm{fx} \mathrm{BD}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f} \cdot \eta_{\mathrm{x}}+0.01 \cdot \Delta \mathrm{H}}$
ex $49.30192 \mathrm{~m}=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15 \cdot 0.8+0.01 \cdot 15 \mathrm{~m}}$
22) Braking Distance on Level Ground with Efficiency
f. $\mathrm{BD}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}}$
ex $41.95524 \mathrm{~m}=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15}$
23) Breaking Distance
$\mathrm{fx} \mathrm{BD}=\frac{\mathrm{V}_{\mathrm{b}}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}}$
Open Calculator
$\operatorname{ex} 41.95524 \mathrm{~m}=\frac{(11.11 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.15}$
24) Breaking Distance given Stopping Sight Distance
```
3
```


f. $\mathrm{BD}=\mathrm{SSD}-\mathrm{LD}$

ex $132.3 \mathrm{~m}=160 \mathrm{~m}-27.7 \mathrm{~m}$
25) Velocity of Vehicle given Breaking Distance $\boxed{\Omega}$
$f \mathbf{x} \mathrm{~V}_{\mathrm{b}}=(\mathrm{BD} \cdot(2 \cdot[\mathrm{~g}] \cdot \mathrm{f}))^{0.5}$
ex $10.84803 \mathrm{~m} / \mathrm{s}=(40 \mathrm{~m} \cdot(2 \cdot[\mathrm{~g}] \cdot 0.15))^{0.5}$
26) Velocity of Vehicle in meter per second for Braking Distance
$f \mathrm{f} \mathrm{V}_{\mathrm{b}}=\sqrt{\mathrm{BD} \cdot(2 \cdot[\mathrm{~g}] \cdot \mathrm{f})}$
Open Calculator
ex $10.84803 \mathrm{~m} / \mathrm{s}=\sqrt{40 \mathrm{~m} \cdot(2 \cdot[\mathrm{~g}] \cdot 0.15)}$

Lag Distance

27) Lag Distance or Reaction Distance for Velocity
$f \mathrm{x} \quad \mathrm{LD}=\mathrm{V}_{\mathrm{b}} \cdot \mathrm{t}$
Open Calculator ©
ex $27.775 \mathrm{~m}=11.11 \mathrm{~m} / \mathrm{s} \cdot 2.5 \mathrm{~s}$
28) Lag Distance or Reaction Distance given Stopping Sight Distance
$f x L D=S S D-B D$

Open Calculator ©
ex $120 \mathrm{~m}=160 \mathrm{~m}-40 \mathrm{~m}$
29) Reaction Time given Lag Distance or Reaction Distance

$$
\begin{aligned}
& f \mathrm{fx}=\frac{\mathrm{LD}}{\mathrm{~V}_{\mathrm{b}}} \\
& \mathbf{e x} 2.493249 \mathrm{~s}=\frac{27.7 \mathrm{~m}}{11.11 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

30) Velocity of Vehicle given Lag Distance or Reaction Distance
$f_{x} V_{b}=\frac{L D}{t}$
ex $11.08 \mathrm{~m} / \mathrm{s}=\frac{27.7 \mathrm{~m}}{2.5 \mathrm{~s}}$

Variables Used

- a Acceleration (Meter per Square Second)
- BD Breaking Distance (Meter)
- D Minimum Length of OSD (Meter)
- f Design Coefficient of Friction
- ISD Intermediate Sight Distance (Meter)
- I Length of Wheel Base as per IRC (Meter)
- LD Lag Distance (Meter)
- OSD Overtaking Sight Distance on road (Meter)
- s Minimum Spacing between Vehicles during Overtaking (Meter)
- SSD Stopping Sight Distance (Meter)
- t Break Reaction Time (Second)
- T Time taken for Overtaking Operation (Second)
- $\mathbf{t}_{\mathbf{r}}$ Reaction Time of Driver (Second)
- V Speed of Fast moving Vehicle (Meter per Second)
- $\mathbf{V}_{\mathbf{b}}$ Speed of Slow moving vehicle (Meter per Second)
- ΔH Difference in Elevation (Meter)
- $\eta_{\mathbf{x}}$ Overall Efficiency from Shaft A to X

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$) Acceleration Unit Conversion

Check other formula lists

- Highway and Road Formulas
- Sight Distances of Highway Formulas
- Highway Geometric Design Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

