进
calculatoratoz.com

unitsconverters.com

Earth Dam and Gravity Dam Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 34 Earth Dam and Gravity Dam Formulas

Earth Dam and Gravity Dam

Earth dam

Coefficient of permiability of earth dam

1) Coefficient of Permeability given Maximum and Minimum Permeability for Earth Dam
$\mathrm{fx} k=\sqrt{K_{\mathrm{o}} \cdot \mu_{\mathrm{r}}}$

Open Calculator
ex $11.3274 \mathrm{~cm} / \mathrm{s}=\sqrt{0.00987 \mathrm{~m}^{2} \cdot 1.3 \mathrm{H} / \mathrm{m}}$
2) Coefficient of Permeability given Quantity of Seepage in Length of Dam $\boxed{\pi}$
$f \mathrm{x} k=\frac{\mathrm{Q}_{\mathrm{t}} \cdot \mathrm{N}}{\mathrm{B} \cdot \mathrm{H}_{L} \cdot L}$
Open Calculator ©
ex $4.646465 \mathrm{~cm} / \mathrm{s}=\frac{0.46 \mathrm{~m}^{3} / \mathrm{s} \cdot 4}{2 \cdot 6.6 \mathrm{~m} \cdot 3 \mathrm{~m}}$
3) Coefficient of Permeability Given Seepage Discharge in Earth Dam

ex $0.291952 \mathrm{~cm} / \mathrm{s}=\frac{0.46 \mathrm{~m}^{3} / \mathrm{s}}{2.02 \cdot 13 \mathrm{~m}^{2} \cdot 6 \mathrm{~s}}$
4) Maximum Permeability given Coefficient of Permeability for Earth Dam凹
$f \mathrm{fx} K_{\mathrm{o}}=\frac{\mathrm{k}^{2}}{\mu_{\mathrm{r}}}$
Open Calculator
ex $0.007692 \mathrm{~m}^{2}=\frac{(10 \mathrm{~cm} / \mathrm{s})^{2}}{1.3 \mathrm{H} / \mathrm{m}}$
5) Minimum Permeability given Coefficient of Permeability for Earth Dam $\boxed{3}$
fx $\mu_{\mathrm{r}}=\frac{\mathrm{k}^{2}}{\mathrm{~K}_{\mathrm{o}}}$
Open Calculator
ex $1.013171 \mathrm{H} / \mathrm{m}=\frac{(10 \mathrm{~cm} / \mathrm{s})^{2}}{0.00987 \mathrm{~m}^{2}}$

Quantity of seepage $\boxed{\boxed{~}}$

6) Head difference between Headwater and Tail Water given Quantity of Seepage in Length of Dam
$f_{x} H_{L}=\frac{Q \cdot N}{B \cdot k \cdot L}$
ex $6.333333 \mathrm{~m}=\frac{0.95 \mathrm{~m}^{3} / \mathrm{s} \cdot 4}{2 \cdot 10 \mathrm{~cm} / \mathrm{s} \cdot 3 \mathrm{~m}}$
7) Length of Dam to which Flow Net applies given Quantity of Seepage in Length of Dam
fx $L=\frac{Q \cdot N}{B \cdot H_{L} \cdot k}$
ex $2.878788 \mathrm{~m}=\frac{0.95 \mathrm{~m}^{3} / \mathrm{s} \cdot 4}{2 \cdot 6.6 \mathrm{~m} \cdot 10 \mathrm{~cm} / \mathrm{s}}$
8) Number of Equipotential Drops of Net given Quantity of Seepage in Length of Dam
$f \mathrm{fx}=\frac{\mathrm{k} \cdot \mathrm{B} \cdot \mathrm{H}_{\mathrm{L}} \cdot \mathrm{L}}{\mathrm{Q}}$
ex $4.168421=\frac{10 \mathrm{~cm} / \mathrm{s} \cdot 2 \cdot 6.6 \mathrm{~m} \cdot 3 \mathrm{~m}}{0.95 \mathrm{~m}^{3} / \mathrm{s}}$

9) Number of Flow Channels of Net Water given Quantity of Seepage in

 Length of Dam$f \mathrm{f} \quad \mathrm{B}=\frac{\mathrm{Q} \cdot \mathrm{N}}{\mathrm{H}_{\mathrm{L}} \cdot \mathrm{k} \cdot \mathrm{L}}$
ex $1.919192=\frac{0.95 \mathrm{~m}^{3} / \mathrm{s} \cdot 4}{6.6 \mathrm{~m} \cdot 10 \mathrm{~cm} / \mathrm{s} \cdot 3 \mathrm{~m}}$
10) Quantity of Seepage in Length of Dam under Consideration
$f \mathrm{f} \mathrm{Q}=\frac{\mathrm{k} \cdot \mathrm{B} \cdot \mathrm{H}_{\mathrm{L}} \cdot \mathrm{L}}{\mathrm{N}}$
Open Calculator
ex
$0.99 \mathrm{~m}^{3} / \mathrm{s}=\frac{10 \mathrm{~cm} / \mathrm{s} \cdot 2 \cdot 6.6 \mathrm{~m} \cdot 3 \mathrm{~m}}{4}$
11) Seepage Discharge in Earth Dam
$f \mathrm{f} \mathrm{Q}_{\mathrm{s}}=\mathrm{k} \cdot \mathrm{i} \cdot \mathrm{A}_{\mathrm{cs}} \cdot \mathrm{t}$
ex $15.756 \mathrm{~m}^{3} / \mathrm{s}=10 \mathrm{~cm} / \mathrm{s} \cdot 2.02 \cdot 13 \mathrm{~m}^{2} \cdot 6 \mathrm{~s}$

Slope protection

12) Fetch given Height of Waves for Fetch more than 20 miles
$f \times F=\frac{\left(\frac{h_{a}}{0.17}\right)^{2}}{V_{w}}$
Open Calculator
ex $257.5087 \mathrm{~m}=\frac{\left(\frac{12.2 \mathrm{~m}}{0.17}\right)^{2}}{20 \mathrm{~m} / \mathrm{s}}$
13) Height of Wave from Trough to Crest given Velocity between 1 and 7 feet

$$
\mathrm{fx} \mathrm{~h}_{\mathrm{a}}=\frac{\mathrm{V}_{\mathrm{w}}-7}{2}
$$

ex $6.5 \mathrm{~m}=\frac{20 \mathrm{~m} / \mathrm{s}-7}{2}$
14) Molitor-Stevenson equation for Height of Waves for Fetch less than 20 miles
$\mathrm{fx}_{\mathrm{x}} \mathrm{h}_{\mathrm{a}}=0.17 \cdot\left(\mathrm{~V}_{\mathrm{w}} \cdot \mathrm{F}\right)^{0.5}+2.5-\mathrm{F}^{0.25}$
Open Calculator
ex $4.967505 \mathrm{~m}=0.17 \cdot(20 \mathrm{~m} / \mathrm{s} \cdot 44 \mathrm{~m})^{0.5}+2.5-(44 \mathrm{~m})^{0.25}$
15) Molitor-Stevenson equation for Height of Waves for Fetch more than 20 miles
$f \mathrm{f} \mathrm{h}_{\mathrm{a}}=0.17 \cdot\left(\mathrm{~V}_{\mathrm{w}} \cdot \mathrm{F}\right)^{0.5}$
ex $5.043015 \mathrm{~m}=0.17 \cdot(20 \mathrm{~m} / \mathrm{s} \cdot 44 \mathrm{~m})^{0.5}$
16) Velocity when Wave Heights between 1 and 7 feet
$\mathrm{fx} \mathrm{V}_{\mathrm{w}}=7+2 \cdot \mathrm{~h}_{\mathrm{a}}$
$\mathrm{ex} 31.4 \mathrm{~m} / \mathrm{s}=7+2 \cdot 12.2 \mathrm{~m}$

Wind velocity

17) Wind Velocity given Height of Waves for Fetch less than 20 miles
$f \times V_{w}=\frac{\left(\frac{h_{a}}{0.17}\right)^{2}}{F}$
ex $117.0494 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{12.2 \mathrm{~m}}{0.17}\right)^{2}}{44 \mathrm{~m}}$
18) Wind Velocity given Height of Waves for Fetch more than 20 miles
$f \times V_{\mathrm{w}}=\frac{\left(\frac{\mathrm{h}_{\mathrm{a}}-\left(2.5-\mathrm{F}^{0.25}\right)}{0.17}\right)^{2}}{\mathrm{~F}}$
Open Calculator
$\operatorname{ex} 118.5028 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{12.2 \mathrm{~m}-\left(2.5-(44 \mathrm{~m})^{0.25}\right)}{0.17}\right)^{2}}{44 \mathrm{~m}}$
19) Zuider Zee Formula for Wind Velocity given Height of Wave Action
$f \times V_{w}=\left(\left(\frac{\left(\frac{\mathrm{h}_{\mathrm{a}}}{\mathrm{H}}\right)-0.75}{1.5}\right) \cdot(2 \cdot[\mathrm{~g}])\right)^{0.5}$
Open Calculator
ex $19.72301 \mathrm{~m} / \mathrm{s}=\left(\left(\frac{\left(\frac{12.2 \mathrm{~m}}{0.4 \mathrm{~m}}\right)-0.75}{1.5}\right) \cdot(2 \cdot[\mathrm{~g}])\right)^{0.5}$
20) Zuider Zee Formula for Wind Velocity given Setup above Pool Level
$f \mathrm{x} \mathrm{V}_{\mathrm{w}}=\left(\frac{\mathrm{h}_{\mathrm{a}}}{\frac{\mathrm{F} \cdot \cos (\theta)}{1400 \cdot \mathrm{~d}}}\right)^{\frac{1}{2}}$
Open Calculator
$\operatorname{ex} 20.95875 \mathrm{~m} / \mathrm{s}=\left(\frac{12.2 \mathrm{~m}}{\frac{44 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)}{1400 \cdot 0.98 \mathrm{~m}}}\right)^{\frac{1}{2}}$

Zuider zee formula

21) Angle of Incidence of Waves by Zuider Zee formula
$f \times \theta=a \cos \left(\frac{\mathrm{~h} \cdot(1400 \cdot \mathrm{~d})}{\left(\mathrm{V}^{2}\right) \cdot \mathrm{F}}\right)$
Open Calculator
ex $69.30904^{\circ}=a \cos \left(\frac{15.6 \mathrm{~m} \cdot(1400 \cdot 0.98 \mathrm{~m})}{\left((83 \mathrm{mi} / \mathrm{h})^{2}\right) \cdot 44 \mathrm{~m}}\right)$
22) Height of Wave Action using Zuider Zee Formula
$\mathrm{fx} \mathrm{h}_{\mathrm{a}}=\mathrm{H} \cdot\left(0.75+1.5 \cdot \frac{\mathrm{~V}_{\mathrm{w}}^{2}}{2 \cdot[\mathrm{~g}]}\right)$
Open Calculator
ex $12.53659 \mathrm{~m}=0.4 \mathrm{~m} \cdot\left(0.75+1.5 \cdot \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}]}\right)$
23) Height of Wave from Trough to Crest given Height of Wave Action by Zuider Zee Formula

$\mathrm{ex} 0.38926 \mathrm{~m}=\frac{12.2 \mathrm{~m}}{0.75+1.5 \cdot \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}]}}$
24) Setup above Pool Level using Zuider Zee Formula
$f \mathrm{x} \mathrm{h}_{\mathrm{a}}=\frac{\left(\mathrm{V}_{\mathrm{w}} \cdot \mathrm{V}_{\mathrm{w}}\right) \cdot \mathrm{F} \cdot \cos (\theta)}{1400 \cdot \mathrm{~d}}$
Open Calculator
ex $11.10936 \mathrm{~m}=\frac{(20 \mathrm{~m} / \mathrm{s} \cdot 20 \mathrm{~m} / \mathrm{s}) \cdot 44 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)}{1400 \cdot 0.98 \mathrm{~m}}$
25) Zuider Zee formula for Average depth of Water given Setup above Pool level 〔
$\mathrm{fx} \mathrm{d}=\frac{\left(\mathrm{V}_{\mathrm{w}} \cdot \mathrm{V}_{\mathrm{w}}\right) \cdot \mathrm{F} \cdot \cos (\theta)}{1400 \cdot \mathrm{~h}_{\mathrm{a}}}$
Open Calculator
ex $0.892392 \mathrm{~m}=\frac{(20 \mathrm{~m} / \mathrm{s} \cdot 20 \mathrm{~m} / \mathrm{s}) \cdot 44 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)}{1400 \cdot 12.2 \mathrm{~m}}$
26) Zuider Zee Formula for Fetch Length given Setup above Pool Level
$\mathrm{fx} \mathrm{F}=\frac{\mathrm{h}_{\mathrm{a}}}{\frac{\left(\mathrm{V}_{\mathrm{w}} \cdot \mathrm{V}_{\mathrm{w}}\right) \cdot \cos (\theta)}{1400 \cdot \mathrm{~d}}}$
Open Calculator
ex $48.3196 \mathrm{~m}=\frac{12.2 \mathrm{~m}}{\frac{(20 \mathrm{~m} / \mathrm{s} \cdot 20 \mathrm{~m} / \mathrm{s}) \cdot \cos \left(30^{\circ}\right)}{1400 \cdot 0.98 \mathrm{~m}}}$

Gravity Dam ex

27) Density of Water given Water Pressure in Gravity Dam
$f \mathrm{fx} \rho_{\text {Water }}=\frac{\mathrm{P}_{\mathrm{W}}}{0.5} \cdot\left(\mathrm{H}_{\mathrm{S}}^{2}\right)$
Open Calculator
ex $729 \mathrm{~kg} / \mathrm{m}^{3}=\frac{450 \mathrm{~Pa}}{0.5} \cdot\left((0.9 \mathrm{~m})^{2}\right)$
28) Eccentricity for Vertical Normal Stress at Downstream Face
$f \times e_{d}=\left(1+\left(\frac{\sigma_{z}}{\frac{F_{v}}{144 \cdot T}}\right)\right) \cdot \frac{T}{6}$
Open Calculator
ex $19.72667=\left(1+\left(\frac{2.5 \mathrm{~Pa}}{\frac{15 \mathrm{~N}}{144 \cdot 2 \cdot 2 \mathrm{~m}}}\right)\right) \cdot \frac{2.2 \mathrm{~m}}{6}$
29) Eccentricity given Vertical Normal Stress at Upstream Face
$f_{\mathrm{x}} \mathrm{e}_{\mathrm{u}}=\left(1-\left(\frac{\sigma_{\mathrm{z}}}{\frac{F_{v}}{144 \cdot T}}\right)\right) \cdot \frac{T}{6}$
Open Calculator
ex $-18.993333=\left(1-\left(\frac{2.5 \mathrm{~Pa}}{\frac{15 \mathrm{~N}}{144 \cdot 2.2 \mathrm{~m}}}\right)\right) \cdot \frac{2.2 \mathrm{~m}}{6}$
30) Total Vertical Force for Vertical Normal Stress at Upstream Face

Open Calculator

$$
\text { ex } 14.99484 \mathrm{~N}=\frac{2.5 \mathrm{~Pa}}{\left(\frac{1}{144 \cdot 2.2 \mathrm{~m}}\right) \cdot\left(1-\left(\frac{6 \cdot-19}{2.2 \mathrm{~m}}\right)\right)}
$$

31) Total Vertical Force given Vertical Normal Stress at Downstream Face $\boxed{\pi}$

$$
\operatorname{ex} 14.99484 \mathrm{~N}=\frac{2.5 \mathrm{~Pa}}{\left(\frac{1}{144 \cdot 2 \cdot 2 \mathrm{~m}}\right) \cdot\left(1+\left(\frac{6.19}{2.2 \mathrm{~m}}\right)\right)}
$$

32) Vertical Normal Stress at Downstream Face
$f \mathbf{f} \sigma_{\mathrm{z}}=\left(\frac{\mathrm{F}_{\mathrm{v}}}{144 \cdot \mathrm{~T}}\right) \cdot\left(1+\left(\frac{6 \cdot \mathrm{e}_{\mathrm{d}}}{\mathrm{T}}\right)\right)$
ex $2.500861 \mathrm{~Pa}=\left(\frac{15 \mathrm{~N}}{144 \cdot 2.2 \mathrm{~m}}\right) \cdot\left(1+\left(\frac{6 \cdot 19}{2.2 \mathrm{~m}}\right)\right)$
33) Vertical Normal Stress at Upstream Face
$\mathrm{fx} \sigma_{\mathrm{z}}=\left(\frac{\mathrm{F}_{\mathrm{v}}}{144 \cdot \mathrm{~T}}\right) \cdot\left(1-\left(\frac{6 \cdot \mathrm{e}_{\mathrm{u}}}{\mathrm{T}}\right)\right)$
$\operatorname{ex} 2.500861 \mathrm{~Pa}=\left(\frac{15 \mathrm{~N}}{144 \cdot 2.2 \mathrm{~m}}\right) \cdot\left(1-\left(\frac{6 \cdot-19}{2.2 \mathrm{~m}}\right)\right)$
34) Water Pressure in Gravity Dam
$f x \mathrm{P}_{\mathrm{W}}=0.5 \cdot \rho_{\text {Water }} \cdot\left(\mathrm{H}_{\mathrm{S}}^{2}\right)$
ex $405 \mathrm{~Pa}=0.5 \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot\left((0.9 \mathrm{~m})^{2}\right)$

Variables Used

- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area of Base (Square Meter)
- B Number of Beds
- d Water Depth (Meter)
- $\mathbf{e}_{\mathbf{d}}$ Eccentricity at Downstream
- $\mathbf{e}_{\mathbf{u}}$ Eccentricity at Upstream
- F Fetch length (Meter)
- $F_{\mathbf{v}}$ Vertical Component of Force (Newton)
- \mathbf{h} Height of Dam (Meter)
- H Wave Height (Meter)
- $\mathbf{h}_{\mathbf{a}}$ Height of Wave (Meter)
- H_{L} Loss of Head (Meter)
- H_{S} Height of Section (Meter)
- i Hydraulic Gradient to Head Loss
- k Coefficient of Permeability of Soil (Centimeter per Second)
- K $\mathbf{K}_{\mathbf{o}}$ Intrinsic Permeability (Square Meter)
- L Length of Dam (Meter)
- \mathbf{N} Equipotential Lines
- PW Water Pressure in Gravity Dam (Pascal)
- Q Quantity of Seepage (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{s}}$ Seepage Discharge (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{t}}$ Discharge from Dam (Cubic Meter per Second)
- t Time Taken to Travel (Second)
- T Thickness of Dam (Meter)
- V Wind Velocity for Freeboard (Mile per Hour)
- $\mathbf{V}_{\mathbf{w}}$ Wind Velocity (Meter per Second)
- $\boldsymbol{\theta}$ Theta (Degree)
- μ_{r} Relative Permeability (Henry per Meter)
- PWater Water Density (Kilogram per Cubic Meter)
- $\boldsymbol{\sigma}_{\mathbf{z}}$ Vertical Stress at a Point (Pascal)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: acos, acos(Number) Inverse trigonometric cosine function
- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Speed in Centimeter per Second (cm/s), Meter per Second (m / s), Mile per Hour (mi/h) Speed Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Magnetic Permeability in Henry per Meter (H/m) Magnetic Permeability Unit Conversion

Check other formula lists

- Arch Dams Formulas
- Buttress Dams Formulas
- Earth Dam and Gravity Dam Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

