

Heat Exchanger and its Effectiveness Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Heat Exchanger and its Effectiveness Formulas

Heat Exchanger and its Effectiveness

1) Capacity Rate

$$\mathbf{f}\mathbf{x} = \dot{\mathbf{m}} \cdot \mathbf{c}$$

$$= 152.25 \text{W/K} = 101.5 \text{kg/s} \cdot 1.5 \text{J/(kg*K)}$$

2) Effectiveness of Counter-Current Heat Exchanger if Cold Fluid is Minimum Fluid

$$\boxed{\textbf{fx}} \left[\epsilon_{c} = \left(modulus \frac{(T_{ci} - T_{co})}{T_{hi} - T_{co}} \right) \right]$$

$$\boxed{\textbf{ex} \left[0.5 = \left(\text{modulus} \frac{(283 \text{K} - 303 \text{K})}{343 \text{K} - 303 \text{K}}\right)\right]}$$

3) Effectiveness of Counter-Current Heat Exchanger if Hot Fluid is Minimum Fluid

$$\epsilon_{
m h} = rac{T_{
m hi} - T_{
m ho}}{T_{
m hi} - T_{
m co}}$$

4) Effectiveness of Parallel-Flow Heat Exchanger if Cold Fluid is Minimum Fluid 🗗

$$\boxed{\epsilon_{c} = \frac{T_{co} - T_{ci}}{T_{hi} - T_{ci}}}$$

$$\epsilon_h = \left(rac{T_{hi} - T_{ho}}{T_{hi} - T_{ci}}
ight)$$

$$\boxed{\texttt{ex}} \left[0.333333 = \left(\frac{343 \text{K} - 323 \text{K}}{343 \text{K} - 283 \text{K}} \right) \right]$$

6) Fouling Factor

$$\boxed{\mathbf{R}_f = \left(\frac{1}{U_d}\right) - \left(\frac{1}{U}\right)}$$

$$\boxed{1.000641 m^2 K/W = \left(\frac{1}{0.975 W/m^2 K}\right) - \left(\frac{1}{40 W/m^2 K}\right)}$$

7) Heat Exchanger Effectiveness

$$\boxed{\textbf{fx}} \boxed{\epsilon = \frac{Q_{Actual}}{Q_{Max}}}$$

8) Heat Exchanger Effectiveness for Minimum Fluid

$$\epsilon = rac{\Delta T_{Min \, Fluid}}{\Delta T_{Max \, HE}}$$
 ex $0.90625 = rac{290 ext{K}}{320 ext{K}}$

9) Heat Transfer in Heat Exchanger given Cold Fluid Properties 🚰

$$\mathbf{R} = \mathrm{modulus}(\mathrm{m_c} \cdot \mathrm{c_c} \cdot (\mathrm{T_{ci}} - \mathrm{T_{co}}))$$

(4000) = modulus(9kg $\cdot 350$ J/(kg*K $) \cdot (283$ K - 303K))

$$\mathbf{k} \left[\mathrm{Q} = \mathrm{m_h} \cdot \mathrm{c_h} \cdot \left(\mathrm{T_{hi}} - \mathrm{T_{ho}}
ight)
ight]$$

$$\mathbf{R} = \mathbf{U} \cdot \mathbf{A} \cdot \Delta \mathbf{T}_{\mathrm{m}}$$

$$=$$
 4275.2 $\mathrm{J} = 40 \mathrm{W/m^2*K \cdot 6.68m^2 \cdot 16K}$

fx
$$Q_{
m Max} = C_{
m min} \cdot (T_{
m hi} - T_{
m ci})$$

ex
$$60000 \text{J/s} = 1000 \text{W/K} \cdot (343 \text{K} - 283 \text{K})$$

13) Number of Heat Transfer Units 🗗

$$ext{NTU} = rac{ ext{U} \cdot ext{A}}{ ext{C}_{ ext{min}}}$$

Open Calculator

$$\boxed{\textbf{ex}} \ 0.2672 = \frac{40 W/m^2 * K \cdot 6.68 m^2}{1000 W/K}$$

14) Overall Heat Transfer Coefficient for Unfinned Tube

$$\boxed{ U_{d} = \frac{1}{\left(\frac{1}{h_{outside}}\right) + R_{o} + \left(\frac{\left(d_{o} \cdot \left(\ln\left(\frac{d_{o}}{d_{i}}\right)\right)\right)}{2 \cdot k}\right) + \left(\frac{R_{i} \cdot A_{o}}{A_{i}}\right) + \left(\frac{A_{o}}{h_{inside} \cdot A_{i}}\right)} } \right] }$$

Open Calculator

ex

$$0.975937 W/m^{2*}K = \frac{1}{\left(\frac{1}{17W/m^{2*}K}\right) + 0.001 m^{2}K/W + \left(\frac{\left(2.68m \cdot \left(\ln\left(\frac{2.68m}{1.27m}\right)\right)\right)}{2 \cdot 10.18W/(m^{*}K)}\right) + \left(\frac{0.002m^{2}K/W \cdot 14m^{2}}{12m^{2}}\right) + \left(\frac{14m^{2}}{1.35W/m^{2*}K \cdot 12w^{2}}\right)}$$

15) Rate of Heat Transfer using Correction Factor and LMTD

fx
$$q = U \cdot A \cdot F \cdot \Delta T_m$$

Open Calculator

$$\mathbf{ex} \ 2009.344 \mathrm{W} = 40 \mathrm{W/m^2*K \cdot 6.68m^2 \cdot 0.47 \cdot 16K}$$

Variables Used

- A Area of Heat Exchanger (Square Meter)
- A_i Inside Tube Surface Area (Square Meter)
- Ao Outside Tube Surface Area (Square Meter)
- C Specific Heat Capacity (Joule per Kilogram per K)
- C Capacity Rate (Watt per Kelvin)
- Cc Specific Heat Capacity of Cold Fluid (Joule per Kilogram per K)
- Ch Specific Heat Capacity of Hot Fluid (Joule per Kilogram per K)
- C_{min} Minimum Capacity Rate (Watt per Kelvin)
- di Inside Tube Diameter (Meter)
- d_o Outside Tube Diameter (Meter)
- F Correction Factor
- hinside Inside Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- houtside External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- **k** Thermal Conductivity (Watt per Meter per K)
- **m** Mass Flow Rate (Kilogram per Second)
- m_c Mass of Cold Fluid (Kilogram)
- mh Mass of Hot Fluid (Kilogram)
- NTU Number of Heat Transfer Units
- q Heat Transfer (Watt)
- Q Heat (Joule)
- Q_{Actual} Actual Rate of Heat Transfer (Joule per Second)
- Q_{Max} Maximum Possible Rate of Heat Transfer (Joule per Second)
- Rf Fouling Factor (Square Meter Kelvin per Watt)
- Ri Fouling Factor on Inside of Tube (Square Meter Kelvin per Watt)
- Ro Fouling Factor on Outside of Tube (Square Meter Kelvin per Watt)
- T_{ci} Inlet Temperature of Cold Fluid (Kelvin)
- T_{co} Outlet Temperature of Cold Fluid (Kelvin)
- T_{hi} Inlet Temperature of Hot Fluid (Kelvin)
- Tho Outlet Temperature of Hot Fluid (Kelvin)
- **U** Overall Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- **U**_d Overall Heat Transfer Coefficient after Fouling (Watt per Square Meter per Kelvin)
- ΔT_m Log Mean Temperature Difference (Kelvin)
- $\Delta T_{Max\ HE}$ Maximum Temperature Difference in Heat Exchanger (Kelvin)

- $\Delta T_{Min\ Fluid}$ Temperature Difference of Minimum Fluid (Kelvin)
- € Effectiveness of Heat Exchanger
- ϵ_{c} Effectiveness of HE when Cold Fluid is Min Fluid
- ϵ_h Effectiveness of HE when Hot Fluid is Min Fluid

Constants, Functions, Measurements used

- Function: In, In(Number)

 Natural logarithm function (base e)
- Function: modulus, modulus Modulus of number
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Temperature in Kelvin (K)
 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

 Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K)) Specific Heat Capacity Unit Conversion
- Measurement: Mass Flow Rate in Kilogram per Second (kg/s)

 Mass Flow Rate Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K)
 Heat Transfer Coefficient Unit Conversion
- Measurement: Rate of Heat Transfer in Joule per Second (J/s)
 Rate of Heat Transfer Unit Conversion
- Measurement: Fouling Factor in Square Meter Kelvin per Watt (m²K/W) Fouling Factor Unit Conversion
- Measurement: Heat Capacity Rate in Watt per Kelvin (W/K)
 Heat Capacity Rate Unit Conversion

Check other formula lists

- Basics of Heat Transfer Formulas
- Co-Relation of Dimensionless Numbers Formulas
- Heat Exchanger Formulas
- Heat Transfer from Extended Surfaces (Fins) Formulas 🔽
- · Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas
- Unsteady State Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/14/2023 | 5:46:59 AM UTC

Please leave your feedback here...

