
calculatoratoz.com

(1)

Transition Curves Surveying Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Transition Curves Surveying Formulas

Transition Curves Surveying

Length of Transition Curve

1) Hands-Off Velocity
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{v}}=\sqrt{\mathrm{g} \cdot \mathrm{R} \cdot \tan (\theta)}$
Open Calculator
ex $13.3546 \mathrm{~m} / \mathrm{s}=\sqrt{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 50 \mathrm{~m} \cdot \tan \left(20^{\circ}\right)}$
2) Length given Angle of Super Elevation
$f \mathbf{L} L_{\mathrm{a}}=\left(\mathrm{g} \cdot \tan \left(\theta_{\mathrm{e}}\right)\right)^{1.5} \cdot \frac{\sqrt{\mathrm{R}_{\text {Curve }}}}{\alpha}$
Open Calculator
ex $146.2214 \mathrm{~m}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot \tan (95.4)\right)^{1.5} \cdot \frac{\sqrt{200 \mathrm{~m}}}{10 \mathrm{~m} / \mathrm{s}^{2}}$
3) Length of Transition Curve given Shift
$f_{x} L_{a}=\sqrt{S \cdot 24 \cdot R_{\text {Curve }}}$
Open Calculator
ex $120 \mathrm{~m}=\sqrt{3 \mathrm{~m} \cdot 24 \cdot 200 \mathrm{~m}}$
4) Length of Transition Curve given Time Rate

5) Length when Comfort Condition Holds Good for Highways
$f_{\mathrm{x}} \mathrm{L}_{\mathrm{a}}=12.80 \cdot \sqrt{\mathrm{R}_{\text {Curve }}}$
Open Calculator
ex $181.0193 \mathrm{~m}=12.80 \cdot \sqrt{200 \mathrm{~m}}$
6) Length when Comfort Condition Holds Good for Railways
$f \mathrm{f} \mathrm{L}_{\mathrm{a}}=4.52 \cdot \sqrt{\mathrm{R}_{\text {Curve }}}$
ex $63.92245 \mathrm{~m}=4.52 \cdot \sqrt{200 \mathrm{~m}}$
7) Rate of Change of Radial Acceleration
$\mathrm{fx} \alpha=\left(\frac{\mathrm{V}^{2}}{\mathrm{R}_{\text {Curve }} \cdot \mathrm{t}}\right)$
Open Calculator
ex $10 \mathrm{~m} / \mathrm{s}^{2}=\left(\frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{200 \mathrm{~m} \cdot 3.2 \mathrm{~s}}\right)$
8) Shift of Curve
$\mathrm{fx} \mathrm{S}=\frac{\mathrm{L}_{\mathrm{a}}^{2}}{24 \cdot \mathrm{R}_{\text {Curve }}}$
ex $4.380208 \mathrm{~m}=\frac{(145 \mathrm{~m})^{2}}{24 \cdot 200 \mathrm{~m}}$

9) Time Rate given Length of Transition Curve

$\boldsymbol{f x} \mathrm{x}=\mathrm{G} \cdot \frac{\mathrm{V}^{3}}{\mathrm{~L}_{\mathrm{a}} \cdot \mathrm{g} \cdot \mathrm{R}_{\text {Curve }}}$
ex $45.03871 \mathrm{~cm} / \mathrm{s}=0.90 \mathrm{~m} \cdot \frac{(80 \mathrm{~km} / \mathrm{h})^{3}}{}$
$145 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 200 \mathrm{~m}$
10) Time Taken given Radial Acceleration
$\mathrm{fx} t=\left(\frac{\mathrm{V}^{2}}{\mathrm{R}_{\text {Curve }} \cdot \alpha}\right)$
ex $3.2 \mathrm{~s}=\left(\frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{200 \mathrm{~m} \cdot 10 \mathrm{~m} / \mathrm{s}^{2}}\right)$

Centrifugal Ratio ©

11) Centrifugal Force Acting on Vehicle

$f \mathrm{fx} \mathrm{F}_{\mathrm{c}}=\frac{\mathrm{W} \cdot \mathrm{V}^{2}}{\mathrm{~g} \cdot \mathrm{R}_{\text {Curve }}}$
ex $166.5306 \mathrm{~N}=\frac{51 \mathrm{~kg} \cdot(80 \mathrm{~km} / \mathrm{h})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 200 \mathrm{~m}}$
12) Centrifugal Ratio
fx $\mathrm{PW}_{\text {ratio }}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{\text {Curve }} \cdot \mathrm{g}}$
ex $3.265306=\frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{200 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}$
13) Design Speed of Highway
$\mathrm{fx} \mathrm{V}_{1}=\sqrt{\frac{\mathrm{R}_{\text {Curve }} \cdot g}{4}}$
$\mathrm{ex} 22.13594 \mathrm{~km} / \mathrm{h}=\sqrt{\frac{200 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{4}}$

14) Design Speed of Railway

$f \mathrm{x} \mathrm{v}_{2}=\sqrt{\mathrm{R}_{\text {Curve }} \cdot \frac{\mathrm{g}}{8}}$
ex $4.34791 \mathrm{~m} / \mathrm{s}=\sqrt{200 \mathrm{~m} \cdot \frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{8}}$
15) Radius of Curve given Centrifugal Force
$\mathrm{fx} \mathrm{R}_{\mathrm{Curve}}=\frac{\mathrm{W} \cdot \mathrm{V}^{2}}{\mathrm{~g} \cdot \mathrm{~F}_{\mathrm{c}}}$
ex $204.332 \mathrm{~m}=\frac{51 \mathrm{~kg} \cdot(80 \mathrm{~km} / \mathrm{h})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 163 \mathrm{~N}}$

16) Speed of Vehicle given Centrifugal Force

$\mathrm{fx}_{\mathrm{V}}^{\mathrm{V}}=\sqrt{\mathrm{F}_{\mathrm{c}} \cdot \mathrm{g} \cdot \frac{\mathrm{R}_{\text {Curve }}}{\mathrm{W}}}$
ex $79.14742 \mathrm{~km} / \mathrm{h}=\sqrt{163 \mathrm{~N} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot \frac{200 \mathrm{~m}}{51 \mathrm{~kg}}}$

Superelevation

17) Cant given Width of Pavement

$f \times \mathrm{h}=\mathrm{B} \cdot \frac{\mathrm{V}^{2}}{\mathrm{R} \cdot \mathrm{g}}$
ex $90.12245 \mathrm{~cm}=6.9 \mathrm{~m} \cdot \frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{50 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}$
18) Gauge Width of Track given Cant \longleftarrow
$f \times \mathrm{G}=\frac{\mathrm{h} \cdot 1.27 \cdot \mathrm{R}}{\mathrm{V}^{2}}$
ex $0.907058 \mathrm{~m}=\frac{91.42 \mathrm{~cm} \cdot 1.27 \cdot 50 \mathrm{~m}}{(80 \mathrm{~km} / \mathrm{h})^{2}}$
19) Pavement Width given Cant
$f \mathrm{fx}=\mathrm{h} \cdot \frac{\mathrm{R} \cdot \mathrm{g}}{\mathrm{V}^{2}}$
ex $6.999344 \mathrm{~m}=91.42 \mathrm{~cm} \cdot \frac{50 \mathrm{~m} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}{(80 \mathrm{~km} / \mathrm{h})^{2}}$

20) Radius of Curve given Cant for Road

$f \mathrm{fx}=\mathrm{B} \cdot \frac{\mathrm{V}^{2}}{\mathrm{~h} \cdot \mathrm{~g}}$
ex $49.29034 \mathrm{~m}=6.9 \mathrm{~m} \cdot \frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{91.42 \mathrm{~cm} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}}$
21) Railway Cant
$f \mathrm{x}=\mathrm{G} \cdot \frac{\mathrm{V}^{2}}{1.27 \cdot \mathrm{R}}$
ex $90.70866 \mathrm{~cm}=0.90 \mathrm{~m} \cdot \frac{(80 \mathrm{~km} / \mathrm{h})^{2}}{1.27 \cdot 50 \mathrm{~m}}$

Variables Used

- B Pavement Width (Meter)
- $\mathbf{F}_{\mathbf{c}}$ Centrifugal Force (Newton)
- \mathbf{g} Acceleration due to Gravity (Meter per Square Second)
- G Railway Gauge (Meter)
- h Cant (Centimeter)
- $\mathbf{L}_{\mathbf{a}}$ Transition Curve Length (Meter)
- PW ratio Centrifugal Ratio
- R Radius of Curve (Meter)
- RCurve Curve Radius (Meter)
- S Shift (Meter)
- t Time taken to Travel (Second)
- V Hands off Velocity (Meter per Second)
- V Vehicle Velocity (Kilometer per Hour)
- \mathbf{V}_{1} Design Speed on Highways (Kilometer per Hour)
- $\mathbf{v}_{\mathbf{2}}$ Design Speed on Railways (Meter per Second)
- W Weight of Vehicle (Kilogram)
- X Super Elevation Time Rate (Centimeter per Second)
- $\mathbf{\alpha}$ Rate of Radial Acceleration (Meter per Square Second)
- $\boldsymbol{\theta}$ Angle of Super Elevation (Degree)
- $\boldsymbol{\theta}_{\mathbf{e}}$ Super Elevation Angle

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m), Centimeter (cm)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s), Kilometer per Hour (km/h), Centimeter per Second (cm/s)
Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$) Angle Unit Conversion

Check other formula lists

- Photogrammetry and Stadia Surveying Formulas
- Compass Surveying Formulas © Transition Curves Surveying
- Electromagnetic Distance Measurement Formulas
- Measurement of Distance with Tapes Formulas
- Surveying Curves Formulas
- Theory of Errors Formulas

Formulas

- Traversing Formulas
- Vertical Control Formulas
- Vertical Curves Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

