

Important Formulas of Cyclic Quadrilateral

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Important Formulas of Cyclic Quadrilateral

Important Formulas of Cyclic Quadrilateral

Angles of Cyclic Quadrilateral

1) Angle A of Cyclic Quadrilateral

$$\boxed{\textbf{A} = \arccos \Bigg(\frac{S_a^2 + S_d^2 - S_b^2 - S_c^2}{2 \cdot ((S_a \cdot S_d) + (S_b \cdot S_c))} \Bigg)}$$

 $(2 \cdot ((2a - 2d) + (2b - 2c)))$ $(2 \cdot ((2a - 2d) + (2b - 2c)))$ (3a - 2d) + (2b - 2c) (2a - 2d) + (2b - 2c) (3a - 2d) + (2c) (3

2) Angle B of Cyclic Quadrilateral

fx
$$\angle \mathrm{B} = \pi - \angle \mathrm{D}$$

Open Calculator

Open Calculator

$$extbf{ex} 70^{\circ} = \pi - 110^{\circ}$$

3) Angle between Diagonals of Cyclic Quadrilateral

$$oldsymbol{eta}_{ ext{Diagonals}} = 2 \cdot rctan \left(\sqrt{rac{(ext{s} - ext{S}_{ ext{b}}) \cdot (ext{s} - ext{S}_{ ext{d}})}{(ext{s} - ext{S}_{ ext{a}}) \cdot (ext{s} - ext{S}_{ ext{c}})}}
ight)$$

Open Calculator

$$\boxed{ 103.4148^\circ = 2 \cdot \arctan \left(\sqrt{\frac{\left(16 \text{m} - 9 \text{m}\right) \cdot \left(16 \text{m} - 5 \text{m}\right)}{\left(16 \text{m} - 10 \text{m}\right) \cdot \left(16 \text{m} - 8 \text{m}\right)}} \right) }$$

4) Angle C of Cyclic Quadrilateral

fx
$$\angle C = \pi - \angle A$$

Open Calculator

ex
$$85\degree=\pi-95\degree$$

5) Angle D of Cyclic Quadrilateral

$$oxed{egin{aligned} \Delta D = rccosigg(rac{S_d^2 + S_c^2 - S_a^2 - S_b^2}{2 \cdot ((S_d \cdot S_c) + (S_b \cdot S_a))} igg) \end{aligned}}$$

Open Calculator

$$\boxed{ 110.7227^{\circ} = \arccos \bigg(\frac{\left(5\mathrm{m}\right)^{2} + \left(8\mathrm{m}\right)^{2} - \left(10\mathrm{m}\right)^{2} - \left(9\mathrm{m}\right)^{2}}{2 \cdot \left(\left(5\mathrm{m} \cdot 8\mathrm{m}\right) + \left(9\mathrm{m} \cdot 10\mathrm{m}\right)\right)} \bigg) }$$

© calculatoratoz.com. A softusvista inc. venture!

Area of Cyclic Quadrilateral 🗗

6) Area of Cyclic Quadrilateral given Angle A

$$oxed{m{\kappa}} \mathbf{A} = rac{1}{2} \cdot ((\mathbf{S}_{\mathrm{a}} \cdot \mathbf{S}_{\mathrm{d}}) + (\mathbf{S}_{\mathrm{b}} \cdot \mathbf{S}_{\mathrm{c}})) \cdot \sin(\angle \mathbf{A})$$

Open Calculator

7) Area of Cyclic Quadrilateral given Angle B

$$A = rac{1}{2} \cdot ((S_a \cdot S_b) + (S_c \cdot S_d)) \cdot \sin(\angle B)$$

Open Calculator

ex
$$61.08002 \text{m}^2 = \frac{1}{2} \cdot ((10 \text{m} \cdot 9 \text{m}) + (8 \text{m} \cdot 5 \text{m})) \cdot \sin(70^\circ)$$

8) Area of Cyclic Quadrilateral given Angle between Diagonals

$$oxed{\mathbf{K}} \mathbf{A} = rac{1}{2} \cdot \left(\left(\mathbf{S}_{\mathrm{a}} \cdot \mathbf{S}_{\mathrm{c}}
ight) + \left(\mathbf{S}_{\mathrm{b}} \cdot \mathbf{S}_{\mathrm{d}}
ight)
ight) \cdot \sin(\angle_{\mathrm{Diagonals}})$$

Open Calculator

Open Calculator

$$\texttt{ex} \ 60.37036 \text{m}^2 = \frac{1}{2} \cdot ((10 \text{m} \cdot 8 \text{m}) + (9 \text{m} \cdot 5 \text{m})) \cdot \sin(105^\circ)$$

9) Area of Cyclic Quadrilateral given Circumradius

fx

 $A = \frac{\sqrt{\left(\left(S_{a} \cdot S_{b}\right) + \left(S_{c} \cdot S_{d}\right)\right) \cdot \left(\left(S_{a} \cdot S_{c}\right) + \left(S_{b} \cdot S_{d}\right)\right) \cdot \left(\left(S_{a} \cdot S_{d}\right) + \left(S_{c} \cdot S_{b}\right)\right)}}{4 \cdot r}$

$$\boxed{ \mathbf{ex} \\ 58.6672 \\ \mathbf{m}^2 = \frac{\sqrt{((10 \\ \mathbf{m} \cdot 9 \\ \mathbf{m}) + (8 \\ \mathbf{m} \cdot 5 \\ \mathbf{m})) \cdot ((10 \\ \mathbf{m} \cdot 8 \\ \mathbf{m}) + (9 \\ \mathbf{m} \cdot 5 \\ \mathbf{m})) \cdot ((10 \\ \mathbf{m} \cdot 5 \\$$

10) Area of Cyclic Quadrilateral given Semiperimeter

$$A = \sqrt{(s - S_a) \cdot (s - S_b) \cdot (s - S_c) \cdot (s - S_d)}$$

Open Calculator

Diagonals of Cyclic Quadrilateral 🗗

11) Diagonal 1 of Cyclic Quadrilateral 🗗

$$\boxed{\textbf{fx}} d_1 = \sqrt{\frac{\left(\left(S_a \cdot S_c\right) + \left(S_b \cdot S_d\right)\right) \cdot \left(\left(S_a \cdot S_d\right) + \left(S_b \cdot S_c\right)\right)}{\left(S_a \cdot S_b\right) + \left(S_c \cdot S_d\right)}}$$

Open Calculator

12) Diagonal 1 of Cyclic Quadrilateral using Ptolemy's Second Theorem

$$\boxed{\mathbf{fx}} d_1 = \left(\frac{(S_a \cdot S_d) + (S_b \cdot S_c)}{(S_a \cdot S_b) + (S_c \cdot S_d)} \right) \cdot d_2$$

Open Calculator

ex
$$11.26154 \mathrm{m} = \left(\frac{(10 \mathrm{m} \cdot 5 \mathrm{m}) + (9 \mathrm{m} \cdot 8 \mathrm{m})}{(10 \mathrm{m} \cdot 9 \mathrm{m}) + (8 \mathrm{m} \cdot 5 \mathrm{m})} \right) \cdot 12 \mathrm{m}$$

13) Diagonal 1 of Cyclic Quadrilateral using Ptolemy's Theorem

$$egin{equation} \mathbf{d}_1 = rac{(\mathbf{S}_{\mathrm{a}} \cdot \mathbf{S}_{\mathrm{c}}) + (\mathbf{S}_{\mathrm{b}} \cdot \mathbf{S}_{\mathrm{d}})}{\mathbf{d}_2} \end{split}$$

Open Calculator 🗗

14) Diagonal 2 of Cyclic Quadrilateral

$$d_2 = \sqrt{\frac{\left(\left(S_a \cdot S_b\right) + \left(S_c \cdot S_d\right)\right) \cdot \left(\left(S_a \cdot S_c\right) + \left(S_b \cdot S_d\right)\right)}{\left(S_a \cdot S_d\right) + \left(S_c \cdot S_b\right)}}$$

Open Calculator

Open Calculator

Other Formulas of Cyclic Quadrilateral

15) Circumradius of Cyclic Quadrilateral

fx $r_{c} = \frac{1}{4} \cdot \left(\sqrt{\frac{\left(\left(S_{a} \cdot S_{b} \right) + \left(S_{c} \cdot \overline{S_{d}} \right) \right) \cdot \left(\left(S_{a} \cdot S_{c} \right) + \left(S_{b} \cdot S_{d} \right) \right) \cdot \left(\left(S_{a} \cdot S_{d} \right) + \left(S_{b} \cdot S_{c} \right) \right)}{\left(s - S_{a} \right) \cdot \left(s - S_{c} \right) \cdot \left(s - S_{d} \right)} \right)} \right)}$

ex

$$\boxed{5.790027 \text{m} = \frac{1}{4} \cdot \left(\sqrt{\frac{\left((10 \text{m} \cdot 9 \text{m}) + (8 \text{m} \cdot 5 \text{m})\right) \cdot \left((10 \text{m} \cdot 8 \text{m}) + (9 \text{m} \cdot 5 \text{m})\right) \cdot \left((10 \text{m} \cdot 5 \text{m}) + (9 \text{m} \cdot 8 \text{m})\right)}{\left(16 \text{m} - 10 \text{m}\right) \cdot \left(16 \text{m} - 9 \text{m}\right) \cdot \left(16 \text{m} - 8 \text{m}\right) \cdot \left(16 \text{m} - 5 \text{m}\right)}\right)}}\right)}$$

16) Circumradius of Cyclic Quadrilateral given Area

$$r_{c} = \frac{\sqrt{\left(\left(S_{a} \cdot S_{b}\right) + \left(S_{c} \cdot S_{d}\right)\right) \cdot \left(\left(S_{a} \cdot S_{c}\right) + \left(S_{b} \cdot S_{d}\right)\right) \cdot \left(\left(S_{a} \cdot S_{d}\right) + \left(S_{c} \cdot S_{b}\right)\right)}}{4 \cdot A}$$

17) Perimeter of Cyclic Quadrilateral 🗗

 $P = S_a + S_b + S_c + S_d$

Open Calculator

Open Calculator

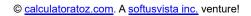
32m = 10m + 9m + 8m + 5m

18) Semiperimeter of Cyclic Quadrilateral

fx
$$s = \frac{P}{2}$$

Open Calculator

$$\boxed{16m = \frac{32m}{2}}$$


Sides of Cyclic Quadrilateral

19) Side A of Cyclic Quadrilateral given both Diagonals

$$\mathbf{K} egin{equation} \mathbf{S}_{\mathrm{a}} = rac{\left(\mathbf{d}_{1} \cdot \mathbf{d}_{2}
ight) - \left(\mathbf{S}_{\mathrm{b}} \cdot \mathbf{S}_{\mathrm{d}}
ight)}{\mathbf{S}_{\mathrm{c}}} \end{split}$$

Open Calculator 🚰

20) Side A of Cyclic Quadrilateral given other Sides and Perimeter 🗗

 $\mathbf{K}[\mathbf{S}_{\mathrm{a}} = \mathrm{P} - (\mathbf{S}_{\mathrm{b}} + \mathbf{S}_{\mathrm{d}} + \mathbf{S}_{\mathrm{c}})]$

Open Calculator

- 10m = 32m (9m + 5m + 8m)
- 21) Side B of Cyclic Quadrilateral given both Diagonals
- $\left[S_{\mathrm{b}} = rac{\left(\mathrm{d_1} \cdot \mathrm{d_2}
 ight) \left(\mathrm{S_a} \cdot \mathrm{S_c}
 ight)}{\mathrm{S_d}}
 ight]$

Open Calculator 🖸

- 22) Side C of Cyclic Quadrilateral given both Diagonals
- $\mathbf{K} \mathbf{S}_{\mathrm{c}} = rac{\left(\mathbf{d}_{1} \cdot \mathbf{d}_{2}
 ight) \left(\mathbf{S}_{\mathrm{b}} \cdot \mathbf{S}_{\mathrm{d}}
 ight)}{\mathbf{S}_{\mathrm{a}}}$

Open Calculator

- 23) Side D of Cyclic Quadrilateral given both Diagonals
- $\mathbf{K} \mathbf{S}_{\mathrm{d}} = rac{\left(\mathrm{d}_{1} \cdot \mathrm{d}_{2}
 ight) \left(\mathrm{S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}}
 ight)}{\mathrm{S}_{\mathrm{b}}}$

Open Calculator

Variables Used

- ∠Diagonals Angle Between Diagonals of Cyclic Quadrilateral (Degree)
- ∠A Angle A of Cyclic Quadrilateral (Degree)
- ∠B Angle B of Cyclic Quadrilateral (Degree)
- ∠C Angle C of Cyclic Quadrilateral (Degree)
- ∠D Angle D of Cyclic Quadrilateral (Degree)
- A Area of Cyclic Quadrilateral (Square Meter)
- d₁ Diagonal 1 of Cyclic Quadrilateral (Meter)
- d₂ Diagonal 2 of Cyclic Quadrilateral (Meter)
- P Perimeter of Cyclic Quadrilateral (Meter)
- rc Circumradius of Cyclic Quadrilateral (Meter)
- S Semiperimeter of Cyclic Quadrilateral (Meter)
- Sa Side A of Cyclic Quadrilateral (Meter)
- S_b Side B of Cyclic Quadrilateral (Meter)
- Sc Side C of Cyclic Quadrilateral (Meter)
- S_d Side D of Cyclic Quadrilateral (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: arccos, arccos(Number)

 Inverse trigonometric cosine function
- Function: arctan, arctan(Number)

 Inverse trigonometric tangent function
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: ctan, ctan(Angle)

 Trigonometric cotangent function
- Function: sin, sin(Angle)
 Trigonometric sine function
- Function: sqrt, sqrt(Number) Square root function
- Function: tan, tan(Angle)

 Trigonometric tangent function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion

Check other formula lists

- Annulus Formulas
- Antiparallelogram Formulas
- Arrow Hexagon Formulas
- Astroid Formulas
- Bulge Formulas
- Cardioid Formulas
- Circular Arc Quadrangle Formulas
- Concave Pentagon Formulas
- Concave Quadrilateral Formulas
- Concave Regular Hexagon Formulas
- Concave Regular Pentagon Formulas
- Crossed Rectangle Formulas
- Cut Rectangle Formulas
- Cyclic Quadrilateral Formulas
- Cycloid Formulas
- Decagon Formulas
- Dodecagon Formulas
- Double Cycloid Formulas
- Fourstar Formulas
- Frame Formulas
- Golden Rectangle Formulas
- Grid Formulas
- H Shape Formulas
- Half Yin-Yang Formulas
- Heart Shape Formulas
- Hendecagon Formulas
- Heptagon Formulas
- Hexadecagon Formulas
- Hexagon Formulas
- Hexagram Formulas
- House Shape Formulas
- Hyperbola Formulas
- Hypocycloid Formulas
- Isosceles Trapezoid Formulas
- Koch Curve Formulas

- L Shape Formulas
- Line Formulas
- Lune Formulas
- N-gon Formulas
- Nonagon Formulas 🗗
- Octagon Formulas
- Octagram Formulas
- Open Frame Formulas
- 🔹 Parallelogram Formulas 🖸
- 🔹 Pentagon Formulas 🚰
- 🕨 Pentagram Formulas 💪
- Polygram Formulas
- Quadrilateral Formulas
- Quarter Circle Formulas
- Rectangle Formulas
- 🔹 Rectangular Hexagon Formulas 🚰
- Regular Polygon Formulas
- Reuleaux Triangle Formulas
- Rhombus Formulas
- Right Trapezoid Formulas
- Round Corner Formulas
- Salinon Formulas
- Semicircle Formulas
- Sharp Kink Formulas
- Square Formulas
- Star of Lakshmi Formulas
- Stretched Hexagon Formulas
- T Shape Formulas
- Tangential Quadrilateral Formulas
- Trapezoid Formulas
- Tricorn Formulas
- Tri-equilateral Trapezoid Formulas
- Truncated Square Formulas
- Unicursal Hexagram Formulas
- X Shape Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/1/2023 | 5:27:02 AM UTC

Please leave your feedback here...

