
calculatoratoz.com

unitsconverters.com

Load Factor Design (LFD) Formulas

Calculators!

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 28 Load Factor Design (LFD) Formulas

Load Factor Design (LFD) ©

Load and Resistance Factor for Bridge Columns ©

1) Buckling Stress for Q Factor Less than or Equal to 1
$\mathrm{fx} \mathrm{F}_{\mathrm{cr}}=\left(1-\left(\frac{\mathrm{Q}_{\mathrm{factor}}}{2}\right)\right) \cdot \mathrm{f}_{\mathrm{y}}$
Open Calculator
ex $248.219 \mathrm{MPa}=\left(1-\left(\frac{0.014248}{2}\right)\right) \cdot 250 \mathrm{MPa}$
2) Buckling Stress given Maximum Strength
$\mathrm{fx} \mathrm{F}_{\mathrm{cr}}=\frac{\mathrm{P}_{\mathrm{u}}}{0.85 \cdot \mathrm{~A}_{\mathrm{g}}}$
Open Calculator
ex $248 \mathrm{MPa}=\frac{1054 \mathrm{kN}}{0.85 \cdot 5000 \mathrm{~mm}^{2}}$
3) Buckling Stress when Q Factor is Greater than 1 亿
$f \mathrm{f} \mathrm{F}_{\mathrm{cr}}=\frac{\mathrm{f}_{\mathrm{y}}}{2 \cdot \mathrm{Q}}$
ex $260.4167 \mathrm{MPa}=\frac{250 \mathrm{MPa}}{2 \cdot 0.48}$
4) Column Gross Effective Area given Maximum Strength
f. $\mathrm{A}_{\mathrm{g}}=\frac{\mathrm{P}_{\mathrm{u}}}{0.85 \cdot \mathrm{~F}_{\text {cr }}}$

Open Calculator
ex $5000 \mathrm{~mm}^{2}=\frac{1054 \mathrm{kN}}{0.85 \cdot 248 \mathrm{MPa}}$
5) Maximum Strength for Compression Members
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{u}}=0.85 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{F}_{\mathrm{cr}}$
Open Calculator
ex $1054 \mathrm{kN}=0.85 \cdot 5000 \mathrm{~mm}^{2} \cdot 248 \mathrm{MPa}$
6) Q Factor
$\mathrm{fx} \mathrm{Q}_{\text {factor }}=\left(\left(\mathrm{k} \cdot \frac{\mathrm{L}_{\mathrm{c}}}{\mathrm{r}}\right)^{2}\right) \cdot\left(\frac{\mathrm{f}_{\mathrm{y}}}{2 \cdot \pi \cdot \pi \cdot \mathrm{E}_{\mathrm{s}}}\right)$
Open Calculator
ex $0.014248=\left(\left(0.5 \cdot \frac{450 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{2}\right) \cdot\left(\frac{250 \mathrm{MPa}}{2 \cdot \pi \cdot \pi \cdot 200000 \mathrm{MPa}}\right)$
7) Steel Yield Strength given Buckling Stress for Q Factor Greater than 1
$\mathrm{fx} \mathrm{f}_{\mathrm{y}}=\mathrm{F}_{\mathrm{cr}} \cdot 2 \cdot \mathrm{Q}$
Open Calculator
ex $238.08 \mathrm{MPa}=248 \mathrm{MPa} \cdot 2 \cdot 0.48$
8) Steel Yield Strength given Buckling Stress for Q Factor Less than or Equal to $1 \leftrightarrows$

$$
\mathrm{ex} 249.7794 \mathrm{MPa}=\frac{248 \mathrm{MPa}}{1-\left(\frac{0.014248}{2}\right)}
$$

9) Steel Yield Strength given Q Factor
$f \mathrm{f} \mathrm{f}_{\mathrm{y}}=\frac{2 \cdot \mathrm{Q}_{\text {factor }} \cdot \pi \cdot \pi \cdot\left(\mathrm{r}^{2}\right) \cdot \mathrm{E}_{\mathrm{s}}}{\left(\mathrm{k} \cdot \mathrm{L}_{\mathrm{c}}\right)^{2}}$
$2 \cdot 0.014248 \cdot \pi \cdot \pi \cdot\left((15 \mathrm{~mm})^{2}\right) \cdot 200000 \mathrm{MPa}$
$(0.5 \cdot 450 \mathrm{~mm})^{2}$

Load-Factor Design for Bridge Beams ©

10) Allowable Bearing Stresses on Pins for Buildings for LFD
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{p}}=0.9 \cdot \mathrm{f}_{\mathrm{y}}$
ex $225 \mathrm{MPa}=0.9 \cdot 250 \mathrm{MPa}$
11) Allowable Bearing Stresses on Pins not Subject to Rotation for Bridges for LFD
$f x F_{p}=0.80 \cdot f_{y}$
ex $200 \mathrm{MPa}=0.80 \cdot 250 \mathrm{MPa}$
12) Allowable Bearing Stresses on Pins Subject to Rotation for Bridges for LFD
$\mathrm{fx} \mathrm{F}_{\mathrm{p}}=0.40 \cdot \mathrm{f}_{\mathrm{y}}$
Open Calculator
ex $100 \mathrm{MPa}=0.40 \cdot 250 \mathrm{MPa}$
13) Area of Flange for Braced Non-Compact Section for LFD
$f \mathrm{fx} \mathrm{A}_{\mathrm{f}}=\frac{\mathrm{L}_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{d}}{20000}$
Open Calculator
ex $4375 \mathrm{~mm}^{2}=\frac{1000 \mathrm{~mm} \cdot 250 \mathrm{MPa} \cdot 350 \mathrm{~mm}}{20000}$
14) Depth of Section for Braced Non-Compact Section for LFD given Maximum Unbraced Length
$\mathrm{fx} \mathrm{d}=\frac{20000 \cdot \mathrm{~A}_{\mathrm{f}}}{\mathrm{f}_{\mathrm{y}} \cdot \mathrm{L}_{\mathrm{b}}}$
ex $350 \mathrm{~mm}=\frac{20000 \cdot 4375 \mathrm{~mm}^{2}}{250 \mathrm{MPa} \cdot 1000 \mathrm{~mm}}$
15) Maximum Bending Strength for Symmetrical Flexural Braced NonCompacted Section for LFD of Bridges
$f x M_{u}=f_{y} \cdot S$
Open Calculator
ex $19.875 \mathrm{kN}^{*} \mathrm{~mm}=250 \mathrm{MPa} \cdot 79.5 \mathrm{~mm}^{3}$
16) Maximum Bending Strength for Symmetrical Flexural Compact Section for LFD of Bridges
$f \times M_{u}=f_{y} \cdot Z$
Open Calculator
ex $20 \mathrm{kN} * \mathrm{~mm}=250 \mathrm{MPa} \cdot 80 \mathrm{~mm}^{3}$
17) Maximum Unbraced Length for Symmetrical Flexural Braced NonCompact Section for LFD of Bridges

$$
f_{\mathrm{x}} \mathrm{~L}_{\mathrm{b}}=\frac{20000 \cdot \mathrm{~A}_{\mathrm{f}}}{\mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}}
$$

ex $1000 \mathrm{~mm}=\frac{20000 \cdot 4375 \mathrm{~mm}^{2}}{250 \mathrm{MPa} \cdot 350 \mathrm{~mm}^{2}}$
18) Maximum Unbraced Length for Symmetrical Flexural Compact Section for LFD of Bridges
$\mathrm{fx} L=\frac{\left(3600-2200 \cdot\left(\frac{\mathrm{M}_{1}}{\mathrm{M}_{\mathrm{u}}}\right)\right) \cdot \mathrm{r}}{\mathrm{f}_{\mathrm{y}}}$
ex $183 \mathrm{~mm}=\frac{\left(3600-2200 \cdot\left(\frac{5 \mathrm{kN} * \mathrm{~mm}}{20 \mathrm{kN} \mathrm{N}_{\mathrm{mm}}}\right)\right) \cdot 15 \mathrm{~mm}}{250 \mathrm{MPa}}$
19) Minimum Flange Thickness for Symmetrical Flexural Braced NonCompact Section for LFD of Bridges匹
$f x t_{f}=\frac{b^{\prime} \cdot \sqrt{f_{y}}}{69.6}$
ex $283.9689 \mathrm{~mm}=\frac{1.25 \mathrm{~mm} \cdot \sqrt{250 \mathrm{MPa}}}{69.6}$
20) Minimum Flange Thickness for Symmetrical Flexural Compact Section for LFD of Bridges

ex $304.0652 \mathrm{~mm}=1.25 \mathrm{~mm} \cdot \sqrt{250 \mathrm{MPa}}$
65
21) Minimum Web Thickness for Symmetrical Flexural Braced NonCompact Section for LFD of Bridges
$f_{\mathrm{x}} \mathrm{t}_{\mathrm{u}}=\frac{\mathrm{h}}{150}$
ex $9 \mathrm{~mm}=\frac{1350 \mathrm{~mm}}{150}$
22) Minimum Web Thickness for Symmetrical Flexural Compact Section for LFD of Bridges

ex $9.101951 \mathrm{~mm}=350 \mathrm{~mm} \cdot \frac{\sqrt{250 \mathrm{MPa}}}{608}$
23) Width of Projection of Flange for Compact Section for LFD given Minimum Flange Thickness
$\mathrm{fx} \mathrm{b}^{\prime}=\frac{65 \cdot \mathrm{t}_{\mathrm{f}}}{\sqrt{\mathrm{f}_{\mathrm{y}}}}$
ex $1.208623 \mathrm{~mm}=\frac{65 \cdot 294 \mathrm{~mm}}{\sqrt{250 \mathrm{MPa}}}$

Steel Yield Strength 〔

24) Steel Yield Strength for Braced Non-Compact Section for LFD given Maximum Unbraced Length
$f_{x} f_{y}=\frac{20000 \cdot A_{f}}{L_{b} \cdot d}$
$250 \mathrm{MPa}=\frac{20000 \cdot 4375 \mathrm{~mm}^{2}}{1000 \mathrm{~mm} \cdot 350 \mathrm{~mm}}$
25) Steel Yield Strength for Compact Section for LFD given Minimum Flange Thickness
$f x f_{y}=\left(65 \cdot \frac{t_{f}}{b^{\prime}}\right)^{2}$
ex $233.7229 \mathrm{MPa}=\left(65 \cdot \frac{294 \mathrm{~mm}}{1.25 \mathrm{~mm}}\right)^{2}$
26) Steel Yield Strength on Pins for Buildings for LFD given Allowable Bearing Stress
$f \mathrm{fx} \mathrm{f}_{\mathrm{y}}=\frac{\mathrm{F}_{\mathrm{p}}}{0.90}$
Open Calculator
ex $194.4444 \mathrm{MPa}=\frac{175 \mathrm{MPa}}{0.90}$
27) Steel Yield Strength on Pins not Subject to Rotation for Bridges for LFD given Pin Stress
$f_{\mathrm{x}} \mathrm{f}_{\mathrm{y}}=\frac{\mathrm{F}_{\mathrm{p}}}{0.80}$
Open Calculator
ex $218.75 \mathrm{MPa}=\frac{175 \mathrm{MPa}}{0.80}$

28) Steel Yield Strength on Pins subject to Rotation for Bridges for LFD

 given Pin Stress
ex $437.5 \mathrm{MPa}=\frac{175 \mathrm{MPa}}{0.40}$

Variables Used

- $\mathbf{A f}_{\mathbf{f}}$ Flange Area (Square Millimeter)
- $\mathbf{A}_{\mathbf{g}}$ Gross Effective Area of Column (Square Millimeter)
- b' Width of Projection of Flange (Millimeter)
- d Depth of Section (Millimeter)
- $\mathbf{E}_{\mathbf{s}}$ Modulus of Elasticity (Megapascal)
- $\mathbf{F}_{\mathbf{c r}}$ Buckling Stress (Megapascal)
- F_{p} Allowable Bearing Stresses on Pins (Megapascal)
- $\mathbf{f}_{\mathbf{y}}$ Yield Strength of Steel (Megapascal)
- \mathbf{h} Unsupported Distance between Flanges (Millimeter)
- k Effective Length Factor
- L Max Unbraced Length for Flexural Compact Section (Millimeter)
- L_{b} Maximum Unbraced Length (Millimeter)
- L_{c} Length of Member between Supports (Millimeter)
- \mathbf{M}_{1} Smaller Moment (Kilonewton Millimeter)
- $\mathbf{M}_{\mathbf{u}}$ Maximum Bending Strength (Kilonewton Millimeter)
- $\mathbf{P}_{\mathbf{u}}$ Strength of Column (Kilonewton)
- Q Q Factors
- Qfactor Factor Q
- r Radius of Gyration (Millimeter)
- S Section Modulus (Cubic Millimeter)
- \mathbf{t}_{f} Flange Minimum Thickness (Millimeter)
- $\mathbf{t}_{\mathbf{u}}$ Web Minimum Thickness (Millimeter)
- Z Plastic Section Modulus (Cubic Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Volume in Cubic Millimeter (mm^{3}) Volume Unit Conversion
- Measurement: Area in Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Moment of Force in Kilonewton Millimeter (kN*mm)

Moment of Force Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Additional Bridge Column Formulas
- Allowable Stress Design for Bridges Formulas
- Bearing on Milled Surfaces and Bridge Fasteners Formulas
- Composite Construction in Highway Bridges Formulas
- Load Factor Design (LFD) Formulas
- Number of Connectors in Bridges Formulas
- Stiffeners on Bridge Girders Formulas
- Suspension Cables Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/17/2023 | 4:46:35 AM UTC
Please leave your feedback here...

