
calculatoratoz.com

unitsconverters.com

Design Thickness of Skirt Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Design Thickness of Skirt Formulas

Design Thickness of Skirt ©

1) Axial Bending Stress due to Wind Load at Base of Vessel
$f_{x} f_{\mathrm{wb}}=\frac{4 \cdot \mathrm{M}_{\mathrm{w}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{sk}}\right)^{2} \cdot \mathrm{t}_{\mathrm{sk}}}$
Open Calculator
ex $0.00101 \mathrm{~N} / \mathrm{mm}^{2}=\frac{4 \cdot 370440000 \mathrm{~N}^{*} \mathrm{~mm}}{\pi \cdot(19893.55 \mathrm{~mm})^{2} \cdot 1.18 \mathrm{~mm}}$
2) Compressive Stress due to Vertical Downward Force
$\mathrm{fx} \mathrm{f}_{\mathrm{d}}=\frac{\Sigma \mathrm{W}}{\pi \cdot \mathrm{D}_{\mathrm{sk}} \cdot \mathrm{t}_{\mathrm{sk}}}$
Open Calculator ©
ex $0.677994 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{\pi \cdot 19893.55 \mathrm{~mm} \cdot 1.18 \mathrm{~mm}}$
3) Maximum Bending Moment in Bearing Plate Inside Chair
$f \times$ Maximum $_{\mathrm{BM}}=\frac{\mathrm{P}_{\text {bolt }} \cdot \mathrm{b}_{\text {spacing }}}{8}$
Open Calculator
ex $2.3 \mathrm{E}^{\wedge} 6 \mathrm{~N}^{*} \mathrm{~mm}=\frac{70000 \mathrm{~N} \cdot 260 \mathrm{~mm}}{8}$
4) Maximum Bending Stress in Base Ring Plate
$f \mathrm{f} \mathrm{f}_{\max }=\frac{6 \cdot M_{\max }}{b \cdot t_{b}^{2}}$

Open Calculator

ex $60.9375 \mathrm{~N} / \mathrm{mm}^{2}=\frac{6 \cdot 13000000 \mathrm{~N}^{*} \mathrm{~mm}}{200 \mathrm{~mm} \cdot(80 \mathrm{~mm})^{2}}$
5) Maximum Tensile Stress
$\mathrm{fx}_{\mathrm{x}} \mathrm{f}_{\text {tensile }}=\mathrm{f}_{\mathrm{sb}}-\mathrm{f}_{\mathrm{d}}$
Open Calculator
ex $119.17 \mathrm{~N} / \mathrm{mm}^{2}=141.67 \mathrm{~N} / \mathrm{mm}^{2}-22.5 \mathrm{~N} / \mathrm{mm}^{2}$
6) Maximum Wind Moment for Vessel with Total Height Greater than 20 m $\boxed{6}$
$f \mathrm{x} \mathrm{M}_{\mathrm{w}}=\mathrm{P}_{\mathrm{lw}} \cdot\left(\frac{\mathrm{h}_{1}}{2}\right)+\mathrm{P}_{\mathrm{uw}} \cdot\left(\mathrm{h}_{1}+\left(\frac{\mathrm{h}_{2}}{2}\right)\right)$
Open Calculator
ex $4.3 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=67 \mathrm{~N} \cdot\left(\frac{2.1 \mathrm{~m}}{2}\right)+119 \mathrm{~N} \cdot\left(2.1 \mathrm{~m}+\left(\frac{1.81 \mathrm{~m}}{2}\right)\right)$
7) Maximum Wind Moment for Vessel with Total Height Less than 20 m U
$f \mathrm{fx} \mathrm{M}_{\mathrm{w}}=\mathrm{P}_{\mathrm{lw}} \cdot\left(\frac{\mathrm{H}}{2}\right)$
Open Calculator
ex $5 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=67 \mathrm{~N} \cdot\left(\frac{15 \mathrm{~m}}{2}\right)$
8) Minimum Width of Base Ring
$f \mathrm{f} \mathrm{L}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{f}_{\mathrm{c}}}$
ex $12.65251 \mathrm{~mm}=\frac{28 \mathrm{~N}}{2.213 \mathrm{~N} / \mathrm{mm}^{2}}$

9) Minimum Wind Pressure at Vessel

$f \times \mathrm{p}_{\mathrm{w}}=0.05 \cdot\left(\mathrm{~V}_{\mathrm{w}}\right)^{2}$
ex $744.2 \mathrm{~N} / \mathrm{m}^{2}=0.05 \cdot(122 \mathrm{~km} / \mathrm{h})^{2}$
10) Moment Arm for Minimum Weight of Vessel
$f_{\mathrm{x}} \mathrm{R}=0.42 \cdot \mathrm{D}_{\mathrm{ob}}$
ex $519.54 \mathrm{~mm}=0.42 \cdot 1237 \mathrm{~mm}$
11) Thickness of Base Bearing Plate
$f x t_{b}=l_{\text {outer }} \cdot\left(\sqrt{\frac{3 \cdot \mathrm{f}_{\text {Compressive }}}{\mathrm{f}_{\mathrm{b}}}}\right)$
ex $87.66147 \mathrm{~mm}=50.09 \mathrm{~mm} \cdot\left(\sqrt{\frac{3 \cdot 161 \mathrm{~N} / \mathrm{mm}^{2}}{157.7 \mathrm{~N} / \mathrm{mm}^{2}}}\right)$

12) Thickness of Bearing Plate inside Chair $\boxed{\boxed{ }}$

$f x t_{b p}=\sqrt{\frac{6 \cdot \text { Maximum }_{B M}}{\left(W_{b p}-d_{b h}\right) \cdot f_{a l l}}}$
ex $1.162112 \mathrm{~mm}=\sqrt{\frac{6 \cdot 2000546 \mathrm{~N}^{*} \mathrm{~mm}}{(501 \mathrm{~mm}-400 \mathrm{~mm}) \cdot 88 \mathrm{~N} / \mathrm{mm}^{2}}}$
13) Thickness of Skirt in Vessel
$f \mathrm{fx} \mathrm{t}_{\text {skirt }}=\frac{4 \cdot \mathrm{M}_{\mathrm{w}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{sk}}\right)^{2} \cdot \mathrm{f}_{\mathrm{wb}}}$
Open Calculator
ex $1.18 \mathrm{~mm}=\frac{4 \cdot 370440000 \mathrm{~N}^{*} \mathrm{~mm}}{\pi \cdot(19893.55 \mathrm{~mm})^{2} \cdot 1.01 \mathrm{~N} / \mathrm{mm}^{2}}$
14) Total Compressive Load on Base Ring
$f \mathrm{x} \mathrm{F}_{\mathrm{b}}=\left(\left(\frac{4 \cdot \mathrm{M}_{\max }}{(\pi) \cdot\left(\mathrm{D}_{\mathrm{sk}}\right)^{2}}\right)+\left(\frac{\Sigma \mathrm{W}}{\pi \cdot \mathrm{D}_{\mathrm{sk}}}\right)\right)$
Open Calculator
$\mathbf{e x} 0.800075 \mathrm{~N}=\left(\left(\frac{4 \cdot 13000000 \mathrm{~N}^{*} \mathrm{~mm}}{(\pi) \cdot(19893.55 \mathrm{~mm})^{2}}\right)+\left(\frac{50000 \mathrm{~N}}{\pi \cdot 19893.55 \mathrm{~mm}}\right)\right)$
15) Wind Load acting on Lower Part of Vessel
$\mathrm{fx} \mathrm{P}_{\mathrm{lw}}=\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{p}_{1} \cdot \mathrm{~h}_{1} \cdot \mathrm{D}_{\mathrm{o}}$
ex $69.552 \mathrm{~N}=0.69 \cdot 4 \cdot 20 \mathrm{~N} / \mathrm{m}^{2} \cdot 2.1 \mathrm{~m} \cdot 0.6 \mathrm{~m}$
16) Wind Load acting on Upper Part of Vessel
$\mathrm{fx} \mathrm{P}_{\mathrm{uw}}=\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{p}_{2} \cdot \mathrm{~h}_{2} \cdot \mathrm{D}_{\mathrm{o}}$
ex $119.8944 \mathrm{~N}=0.69 \cdot 4 \cdot 40 \mathrm{~N} / \mathrm{m}^{2} \cdot 1.81 \mathrm{~m} \cdot 0.6 \mathrm{~m}$

Variables Used

- b Circumferential Length of Bearing Plate (Millimeter)
- $\mathbf{b}_{\text {spacing }}$ Spacing Inside Chairs (Millimeter)
- $\mathbf{d}_{\mathbf{b h}}$ Diameter of Bolt Hole in Bearing Plate (Millimeter)
- $\mathbf{D}_{\mathbf{o}}$ Outside Diameter of Vessel (Meter)
- $\mathbf{D}_{\mathbf{o b}}$ Outer Diameter of Bearing Plate (Millimeter)
- $\mathbf{D}_{\mathbf{s k}}$ Mean Diameter of Skirt (Millimeter)
- $\mathbf{f}_{\text {all }}$ Allowable Stress in Bolt Material (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{b}}$ Allowable Bending Stress (Newton per Square Millimeter)
- $\mathbf{F}_{\mathbf{b}}$ Total Compressive Load at Base Ring (Newton)
- $\mathbf{f}_{\mathbf{c}}$ Stress in Bearing Plate and Concrete Foundation (Newton per Square Millimeter)
- \mathbf{f} Compressive Maximum Compressive Stress (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{d}}$ Compressive Stress due to Force (Newton per Square Millimeter)
- $\mathbf{f}_{\text {max }}$ Maximum Bending Stress in Base Ring Plate (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{s b}}$ Stress due to Bending Moment (Newton per Square Millimeter)
- $f_{\text {tensile }}$ Maximum Tensile Stress (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{w b}}$ Axial Bending Stress at Base of Vessel (Newton per Square Millimeter)
- H Total Height of Vessel (Meter)
- $\mathbf{h}_{\mathbf{1}}$ Height of Lower Part of Vessel (Meter)
- $\mathbf{h}_{\mathbf{2}}$ Height of Upper Part of Vessel (Meter)
- \mathbf{k}_{1} Coefficient depending on Shape Factor
- $\mathbf{k}_{\text {coefficient }}$ Coefficient Period of One Cycle of Vibration
- L_{b} Minimum Width of Base Ring (Millimeter)
- Iouter Difference Outer Radius of Bearing Plate and Skirt (Millimeter)
- $\mathbf{M}_{\text {max }}$ Maximum Bending Moment (Newton Millimeter)
- $\mathbf{M}_{\mathbf{w}}$ Maximum Wind Moment (Newton Millimeter)
- Maximum BM Maximum Bending Moment in Bearing Plate (Newton Millimeter)
- \mathbf{p}_{1} Wind Pressure acting on Lower Part of Vessel (Newton per Square Meter)
- $\mathbf{p}_{\mathbf{2}}$ Wind Pressure acting on Upper Part of Vessel (Newton per Square Meter)
- $\mathbf{P}_{\text {bolt }}$ Load on Each Bolt (Newton)
- $\mathbf{P}_{\mathbf{I w}}$ Wind Load acting on Lower Part of Vessel (Newton)
- $\mathbf{P}_{\mathbf{u w}}$ Wind Load acting on Upper Part of Vessel (Newton)
- $\mathbf{p}_{\mathbf{w}}$ Minimum Wind Pressure (Newton per Square Meter)
- R Moment Arm for Minimum Weight of Vessel (Millimeter)
- \mathbf{t}_{b} Thickness of Base Bearing Plate (Millimeter)
- $\mathbf{t}_{\mathbf{b p}}$ Thickness of Bearing Plate inside Chair (Millimeter)
- $\mathbf{t}_{\mathbf{s k}}$ Thickness of Skirt (Millimeter)
- $\mathbf{t}_{\text {skirt }}$ Thickness of Skirt in Vessel (Millimeter)
- \mathbf{V}_{w} Maximum Wind Velocity (Kilometer per Hour)
- $\mathbf{W}_{\mathbf{b p}}$ Width of Bearing Plate (Millimeter)
- $\mathbf{\Sigma W}$ Total Weight of Vessel (Newton)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m) Length Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Speed in Kilometer per Hour (km/h) Speed Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Moment of Force in Newton Millimeter (N*mm) Moment of Force Unit Conversion
- Measurement: Bending Moment in Newton Millimeter (N*mm) Bending Moment Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Anchor Bolt \& Bolting Chair Formulas
- Design Thickness of Skirt Formulas
- Lug or Bracket Support Formulas
- Saddle Support Formulas
- Skirt Supports Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

