Saddle Support Formulas

Calculators!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here..

List of 12 Saddle Support Formulas

Saddle Support

1) Bending Moment at Centre of Vessel Span
$f \times M_{2}=\frac{\mathrm{Q} \cdot \mathrm{L}}{4} \cdot\left(\left(\frac{1+2 \cdot\left(\frac{\left(\mathrm{R}_{\text {vessel }}\right)^{2}-\left(\text { Depth }_{\text {Head }}\right)^{2}}{\mathrm{~L}^{2}}\right)}{1+\left(\frac{4}{3}\right) \cdot\left(\frac{\text { Depth }_{\text {Head }}}{\mathrm{L}}\right)}\right)-\frac{4 \cdot \mathrm{~A}}{\mathrm{~L}}\right)$
Open Calculator
ex
$2.8 \mathrm{E}^{\wedge} 12 \mathrm{~N}^{*} \mathrm{~mm}=\frac{675098 \mathrm{~N} \cdot 23399 \mathrm{~mm}}{4} \cdot\left(\left(\frac{1+2 \cdot\left(\frac{(1539 \mathrm{~mm})^{2}-(1581 \mathrm{~mm})^{2}}{(23399 \mathrm{~mm})^{2}}\right)}{1+\left(\frac{4}{3}\right) \cdot\left(\frac{1581 \mathrm{~mm}}{23399 \mathrm{~mm}}\right)}\right)-\frac{4 \cdot 1210 \mathrm{~mm}}{23399 \mathrm{~mm}}\right)$
2) Bending Moment at Support
$f \mathbf{f x} \mathrm{M}_{1}=\mathrm{Q} \cdot \mathrm{A} \cdot\left((1)-\left(\frac{1-\left(\frac{\mathrm{A}}{\mathrm{L}}\right)+\left(\frac{\left(\mathrm{R}_{\text {vessel }}\right)^{2}-\left(\text { Depth }_{\text {Head }}\right)^{2}}{2 \cdot \mathrm{~A} \cdot \mathrm{~L}}\right)}{1+\left(\frac{4}{3}\right) \cdot\left(\frac{\text { Depth }_{\text {Head }}}{\mathrm{L}}\right)}\right)\right)$
Open Calculator
ex
$1.1 \mathrm{E}^{\wedge} 8 \mathrm{~N}^{*} \mathrm{~mm}=675098 \mathrm{~N} \cdot 1210 \mathrm{~mm} \cdot\left((1)-\left(\frac{1-\left(\frac{1210 \mathrm{~mm}}{23399 \mathrm{~mm}}\right)+\left(\frac{(1539 \mathrm{~mm})^{2}-(1581 \mathrm{~mm})^{2}}{2 \cdot 1210 \mathrm{~mm} \cdot 23399 \mathrm{~mm}}\right)}{1+\left(\frac{4}{3}\right) \cdot\left(\frac{1581 \mathrm{~mm}}{23399 \mathrm{~mm}}\right)}\right)\right)$
3) Combined Stresses at Bottommost Fibre of Cross Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{f}_{\mathrm{cs} 2}=\mathrm{f}_{\mathrm{cs} 1}-\mathrm{f}_{2}$
Open Calculator
ex $61.19 \mathrm{~N} / \mathrm{mm}^{2}=61.19 \mathrm{~N} / \mathrm{mm}^{2}-0.0000044 \mathrm{~N} / \mathrm{mm}^{2}$
4) Combined Stresses at Mid Span
$\mathrm{f}_{\mathrm{x}} \mathrm{f}_{\mathrm{cs} 3}=\mathrm{f}_{\mathrm{cs} 1}+\mathrm{f}_{3}$
ex $87.19 \mathrm{~N} / \mathrm{mm}^{2}=61.19 \mathrm{~N} / \mathrm{mm}^{2}+26 \mathrm{~N} / \mathrm{mm}^{2}$
5) Combined Stresses at Topmost Fibre of Cross Section
$\mathrm{fx}_{\mathrm{f}}^{\mathrm{f}} \mathrm{cs}=\mathrm{f}_{\mathrm{cs} 1}+\mathrm{f}_{1}$
ex $61.197 \mathrm{~N} / \mathrm{mm}^{2}=61.19 \mathrm{~N} / \mathrm{mm}^{2}+0.007 \mathrm{~N} / \mathrm{mm}^{2}$
6) Corresponding Bending Stress with Section Modulus
$f \mathrm{f} \mathrm{f}_{\mathrm{wb}}=\frac{M_{\mathrm{w}}}{\mathrm{Z}}$
ex $0.901314 \mathrm{~N} / \mathrm{mm}^{2}=\frac{370440000 \mathrm{~N}^{*} \mathrm{~mm}}{411000000 \mathrm{~mm}^{3}}$
7) Period of Vibration at Dead Weight $\boxed{\boxed{ } 1}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}=6.35 \cdot 10^{-5} \cdot\left(\frac{\mathrm{H}}{\mathrm{D}}\right)^{\frac{3}{2}} \cdot\left(\frac{\Sigma \text { Weight }}{\mathrm{t}_{\text {vesselwall }}}\right)^{\frac{1}{2}}$
ex $0.012801 \mathrm{~s}=6.35 \cdot 10^{-5} \cdot\left(\frac{12000 \mathrm{~mm}}{600 \mathrm{~mm}}\right)^{\frac{3}{2}} \cdot\left(\frac{35000 \mathrm{~N}}{6890 \mathrm{~mm}}\right)^{\frac{1}{2}}$
8) Stability Coefficient of Vessel
fx $Y=\frac{M_{\text {weight }}}{M_{w}}$
ex $0.000634=\frac{234999 \mathrm{~N}^{*} \mathrm{~mm}}{370440000 \mathrm{~N}^{*} \mathrm{~mm}}$
9) Stress due to Longitudinal Bending at Bottom most Fibre of Cross Section
$\mathrm{fx} \mathrm{f}_{2}=\frac{\mathrm{M}_{1}}{\mathrm{k}_{2} \cdot \pi \cdot(\mathrm{R})^{2} \cdot \mathrm{t}}$
Open Calculator
ex $4.4 \mathrm{E}^{\wedge}-6 \mathrm{~N} / \mathrm{mm}^{2}=\frac{1000000 \mathrm{~N}^{*} \mathrm{~mm}}{0.192 \cdot \pi \cdot(1380 \mathrm{~mm})^{2} \cdot 200 \mathrm{~mm}}$
10) Stress due to Longitudinal Bending at Mid-Span
$\mathrm{fx} \mathrm{f}_{3}=\frac{\mathrm{M}_{2}}{\pi \cdot(\mathrm{R})^{2} \cdot \mathrm{t}}$
ex $26.12199 \mathrm{~N} / \mathrm{mm}^{2}=\frac{31256789045 \mathrm{~N}^{*} \mathrm{~mm}}{\pi \cdot(1380 \mathrm{~mm})^{2} \cdot 200 \mathrm{~mm}}$
11) Stress due to Longitudinal Bending at Top most Fibre of Cross Section
$\mathrm{fx} \mathrm{f}_{1}=\frac{\mathrm{M}_{1}}{\mathrm{k}_{1} \cdot \pi \cdot(\mathrm{R})^{2} \cdot \mathrm{t}}$
ex $0.00781 \mathrm{~N} / \mathrm{mm}^{2}=\frac{1000000 \mathrm{~N}^{*} \mathrm{~mm}}{0.107 \cdot \pi \cdot(1380 \mathrm{~mm})^{2} \cdot 200 \mathrm{~mm}}$
12) Stress due to Seismic Bending Moment
$f \times \mathrm{f}_{\text {bendingmoment }}=\frac{4 \cdot \mathrm{M}_{\mathrm{s}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{sk}}^{2}\right) \cdot \mathrm{t}_{\mathrm{sk}}}$
ex $0.013135 \mathrm{~N} / \mathrm{mm}^{2}=\frac{4 \cdot 4400000 \mathrm{~N}^{*} \mathrm{~mm}}{\pi \cdot\left((601.2 \mathrm{~mm})^{2}\right) \cdot 1.18 \mathrm{~mm}}$

Variables Used

- A Distance from Tangent Line to Saddle Centre (Millimeter)
- D Diameter of Shell Vessel Support (Millimeter)
- $\mathbf{D}_{\mathbf{s k}}$ Mean Diameter of Skirt (Millimeter)
- Depth Head Depth of Head (Millimeter)
- $\mathbf{f}_{\mathbf{1}}$ Stress Bending Moment at Topmost of Cross Section (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{1 c s}}$ Combined Stresses Topmost Fibre Cross Section (Newton per Square Millimeter)
- \mathbf{f}_{2} Stress at Bottom most Fibre of Cross Section (Newton per Square Millimeter)
- \mathbf{f}_{3} Stress due to Longitudinal Bending at Mid-Span (Newton per Square Millimeter)
- $\mathrm{f}_{\text {bendingmoment }}$ Stress due to Seismic Bending Moment (Newton per Square Millimeter)
- $\mathbf{f}_{\text {cs1 }}$ Stress due to Internal Pressure (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{c s 2}}$ Combined Stresses Bottommost Fibre Cross Section (Newton per Square Millimeter)
- $\mathbf{f c s}_{\mathbf{c s} 3}$ Combined Stresses at Mid Span (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{w b}}$ Axial Bending Stress at Base of Vessel (Newton per Square Millimeter)
- H Overall Height of Vessel (Millimeter)
- $\mathbf{k}_{\mathbf{1}}$ Value of k 1 depending on Saddle Angle
- $\mathbf{k}_{\mathbf{2}}$ Value of k 2 depending on Saddle Angle
- L Tangent to Tangent Length of Vessel (Millimeter)
- $\mathbf{M}_{\mathbf{1}}$ Bending Moment at Support (Newton Millimeter)
- $\mathbf{M}_{\mathbf{2}}$ Bending Moment at Centre of Vessel Span (Newton Millimeter)
- $\mathbf{M}_{\mathbf{s}}$ Maximum Seismic Moment (Newton Millimeter)
- $\mathbf{M}_{\mathbf{w}}$ Maximum Wind Moment (Newton Millimeter)
- $\mathbf{M}_{\text {weight }}$ Bending Moment due to Minimum Weight of Vessel (Newton Millimeter)
- Q Total Load per Saddle (Newton)
- \mathbf{R} Shell Radius (Millimeter)
- $\mathbf{R}_{\text {vessel }}$ Vessel Radius (Millimeter)
- \mathbf{t} Shell Thickness (Millimeter)
- T Period of Vibration at Dead Weight (Second)
- $\mathbf{t}_{\mathbf{s k}}$ Thickness of Skirt (Millimeter)
- $\mathbf{t}_{\text {vesselwall }}$ Corroded Vessel Wall Thickness (Millimeter)
- Y Stability Coefficient of Vessel
- Z Section Modulus of Skirt Cross Section (Cubic Millimeter)
- $\mathbf{\Sigma W e i g h t ~ W e i g h t ~ o f ~ V e s s e l ~ w i t h ~ A t t a c h m e n t s ~ a n d ~ C o n t e n t s ~ (N e w t o n) ~}$

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Volume in Cubic Millimeter (mm^{3})

Volume Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion $\sqrt{ }$

- Measurement: Moment of Force in Newton Millimeter (N*mm) Moment of Force Unit Conversion
- Measurement: Bending Moment in Newton Millimeter (N*mm) Bending Moment Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Anchor Bolt \& Bolting Chair Formulas
- Design Thickness of Skirt Formulas
- Lug or Bracket Support Formulas
- Saddle Support Formulas
- Skirt Supports Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

