
calculatoratoz.com

unitsconverters.com

Photogrammetry Stadia and Compass Surveying Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Photogrammetry Stadia and Compass Surveying Formulas

Photogrammetry Stadia and Compass Surveying ${ }^{6}$

Photogrammetry ©

1) Elevation of Point, Line or Area
$f \mathrm{f} \mathrm{h}_{1}=\left(\mathrm{H}-\left(\frac{\mathrm{f}_{\mathrm{len}}}{\mathrm{P}}\right)\right)$
ex $9 \mathrm{~m}=\left(11 \mathrm{~m}-\left(\frac{4.2 \mathrm{~m}}{2.1}\right)\right)$
2) Flying Height of Airplane above Datum
$f \times H=\left(\left(\frac{f_{\text {len }}}{P}\right)+h_{1}\right)$
Open Calculator
ex $11 \mathrm{~m}=\left(\left(\frac{4.2 \mathrm{~m}}{2.1}\right)+9 \mathrm{~m}\right)$
3) Focal Length of Lens given Photo Scale
$f x f_{\text {len }}=\left(\mathrm{P} \cdot\left(\mathrm{H}-\mathrm{h}_{1}\right)\right)$
Open Calculator
ex $4.2 \mathrm{~m}=(2.1 \cdot(11 \mathrm{~m}-9 \mathrm{~m}))$
4) Photo Scale given Focal Length
$f x P=\left(\frac{f_{\text {len }}}{H-h_{1}}\right)$
Open Calculator
ex $2.1=\left(\frac{4.2 \mathrm{~m}}{11 \mathrm{~m}-9 \mathrm{~m}}\right)$

Stadia Surveying

5) Additive Constant or Stadia Constant $\boxed{\boxed{ } 1}$
$f \mathrm{fx}=\left(\mathrm{f}+\mathrm{D}_{\mathrm{c}}\right)$
Open Calculator
ex $10 \mathrm{~m}=(2 \mathrm{~m}+8 \mathrm{~m})$
6) Distance Equation given Index Error \longleftarrow
$f \mathrm{x} D=\left(\mathrm{K}_{\mathrm{M}} \cdot \frac{\mathrm{s}_{\mathrm{i}}}{\mathrm{m}-\mathrm{e}}\right)+\mathrm{C}_{\mathrm{add}}$
Open Calculator
ex $35.5 \mathrm{~m}=\left(12 \cdot \frac{3 \mathrm{~m}}{3.1-1.5}\right)+13$
7) Horizontal Distance between Center of Transit and Rod
$\mathrm{H}_{\text {Horizontal }}=\left(\mathrm{K} \cdot \mathrm{R}_{\mathrm{i}} \cdot(\cos (\mathrm{a}))^{2}\right)+(\mathrm{fc} \cdot \cos (\mathrm{a}))$
ex $26.90396 \mathrm{~m}=\left(11.1 \cdot 3.2 \mathrm{~m} \cdot\left(\cos \left(30^{\circ}\right)\right)^{2}\right)+\left(0.3048 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)\right)$
8) Horizontal Distance using Gradienter

$$
f \mathrm{f} D=\mathrm{s}_{\mathrm{i}} \cdot \frac{100 \cdot \cos (\mathrm{x})^{2} \cdot 0.5 \cdot \sin (2 \cdot \mathrm{x})}{\mathrm{m} \cdot \mathrm{c}}
$$

ex $10.98572 \mathrm{~m}=3 \mathrm{~m} \cdot \frac{100 \cdot \cos \left(20^{\circ}\right)^{2} \cdot 0.5 \cdot \sin \left(2 \cdot 20^{\circ}\right)}{3.1 \cdot 2.5 \mathrm{~m}}$
9) Intercept on Rod between Two Sighting Wires
fx $R=\frac{D_{s}}{\left(\frac{f}{R_{i}}\right)+C}$
Open Calculator
ex $6.023529 \mathrm{~m}=\frac{64 \mathrm{~m}}{\left(\frac{2 \mathrm{~m}}{3.2 \mathrm{~m}}\right)+10 \mathrm{~m}}$
10) Stadia Distance from Instrument Spindle to Rod
$f x \mathrm{D}_{\mathrm{s}}=\mathrm{R} \cdot\left(\left(\frac{\mathrm{f}}{\mathrm{R}_{\mathrm{i}}}\right)+\mathrm{C}\right)$
Open Calculator
$\mathrm{ex} 63.75 \mathrm{~m}=6 \mathrm{~m} \cdot\left(\left(\frac{2 \mathrm{~m}}{3.2 \mathrm{~m}}\right)+10 \mathrm{~m}\right)$
11) Stadia Interval
$\mathrm{fx} \mathrm{S}_{\mathrm{i}}=\mathrm{m} \cdot \mathrm{P}_{\text {screw }}$
ex $15.5 \mathrm{~m}=3.1 \cdot 5 \mathrm{~m}$

12) Staff Intercept 〔

$f \mathbf{x} \mathrm{~s}_{\mathrm{i}}=\mathrm{D} \cdot\left(\tan \left(\theta_{1}\right)-\tan \left(\theta_{2}\right)\right)$

Open Calculator

ex $3.982713 \mathrm{~m}=35.5 \mathrm{~m} \cdot\left(\tan \left(25^{\circ}\right)-\tan \left(19.5^{\circ}\right)\right)$
13) Staff Intercept in Gradienter given Horizontal Distance
$f \mathbf{x} \mathrm{~s}_{\mathrm{i}}=\frac{\mathrm{D}}{\frac{100 \cdot \cos (\mathrm{x})^{2} \cdot 0.5 \cdot \sin (2 \cdot \mathrm{x})}{\mathrm{m} \cdot \mathrm{c}}}$
Open Calculator
ex $9.6944 \mathrm{~m}=\frac{35.5 \mathrm{~m}}{\frac{100 \cdot \cos \left(20^{\circ}\right)^{2} \cdot 0.5 \cdot \sin \left(2 \cdot 20^{\circ}\right)}{3.1 \cdot 2.5 \mathrm{~m}}}$
14) Staff Intercept in Gradienter given Vertical Distance
$f \mathbf{x} \mathrm{~s}_{\mathrm{i}}=\frac{\mathrm{V}}{\frac{100 \cdot \sin (2 \cdot \mathrm{x}) \cdot 0.5 \cdot \sin (\mathrm{x})^{2}}{\mathrm{~m} \cdot \mathrm{c}}}$
ex $8.245573 \mathrm{~m}=\frac{4 \mathrm{~m}}{\frac{100 \cdot \sin \left(2 \cdot 20^{\circ}\right) \cdot 0.5 \cdot \sin \left(20^{\circ}\right)^{2}}{3.1 \cdot 2.5 \mathrm{~m}}}$
15) Vertical Distance between Center of Transit and Rod Intersected by Middle Horizontal Crosshair

Open Calculator
ex

$$
0.016174 \mathrm{~m}=\frac{1}{2 \cdot\left(\left(11.1 \cdot 3.2 \mathrm{~m} \cdot \sin \left(2 \cdot 30^{\circ}\right)\right)+\left(0.3048 \mathrm{~m} \cdot \sin \left(30^{\circ}\right)\right)\right)}
$$

16) Vertical Distance between Instrument Axis and Lower Vane
$f \mathrm{x}=\mathrm{D} \cdot \tan \left(\theta_{2}\right)$
Open Calculator
ex $12.57121 \mathrm{~m}=35.5 \mathrm{~m} \cdot \tan \left(19.5^{\circ}\right)$
17) Vertical Distance using Gradienter
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=\mathrm{s}_{\mathrm{i}} \cdot \frac{100 \cdot \sin (2 \cdot \mathrm{x}) \cdot 0.5 \cdot \sin (\mathrm{x})^{2}}{\mathrm{~m} \cdot \mathrm{c}}$
Open Calculator 〔
$\operatorname{ex} 1.455326 \mathrm{~m}=3 \mathrm{~m} \cdot \frac{100 \cdot \sin \left(2 \cdot 20^{\circ}\right) \cdot 0.5 \cdot \sin \left(20^{\circ}\right)^{2}}{3.1 \cdot 2.5 \mathrm{~m}}$

Variables Used

- a Vertical Inclination of Line of Sight (Degree)
- c Distance in One Turn (Meter)
- C Stadia Constant (Meter)
- Cadd $_{\text {Additive Constant }}$
- D Distance between Two Points (Meter)
- $\mathbf{D}_{\mathbf{c}}$ Distance from Center (Meter)
- $\mathbf{D}_{\mathbf{s}}$ Stadia Distance (Meter)
- e Index Error
- f Focal Length of Telescope (Meter)
- $\mathbf{f}_{\text {len }}$ Focal Length of Lens (Meter)
- fc Instrument Constant (Meter)
- H Flying Height of Airplane (Meter)
- $\mathbf{h}_{\mathbf{1}}$ Elevation of Point (Meter)
- $\mathbf{H}_{\text {Horizontal }}$ Horizontal Distance (Meter)
- K Stadia Factor
- $\mathbf{K}_{\mathbf{M}}$ Multiplying Constant
- m Revolution of Screw
- P Photo Scale
- $\mathbf{P}_{\text {screw }}$ Pitch Screw (Meter)
- R Intercept on Rod (Meter)
- $\mathbf{R}_{\mathbf{i}}$ Rod Intercept (Meter)
- $\mathbf{S}_{\mathbf{i}}$ Staff Intercept (Meter)
- $\mathbf{S}_{\mathbf{i}}$ Stadia Interval (Meter)
- V Vertical Distance (Meter)
- x Vertical Angle (Degree)
- $\boldsymbol{\theta}_{1}$ Vertical Angle to Upper Vane (Degree)
- θ_{2} Vertical Angle to Lower Vane (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sin, $\sin ($ Angle)

Trigonometric sine function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$ Angle Unit Conversion

Check other formula lists

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

