

Composite Construction in Highway Bridges Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 22 Composite Construction in Highway Bridges Formulas

4) Live Load Moment given Stress in Steel for Unshored Members 🕑

5) Multiplier for Allowable Stress when Flange Bending Stress is lesser than Allowable Stress

fx
$$\mathbf{R} = 1 - rac{\left(1-lpha
ight)^2 \cdot \left(eta \cdot \psi
ight) \cdot \left(3-\psi+\psi\cdot lpha
ight)}{6+eta\cdot\psi\cdot (3-\psi)}$$

$$0.5 = 1 - \frac{(1 - 1.5)^2 \cdot (3 \cdot 2.0) \cdot (3 - 2.0 + 2.0 \cdot 1.5)}{6 + 3 \cdot 2.0 \cdot (3 - 2.0)}$$

6) Section Modulus of Steel Beam given Stress in Steel for Unshored Members

$$\label{eq:Ss} \begin{split} \textbf{fx} \ \textbf{S}_{s} &= \frac{M_{D(unshored)}}{f_{steel\,stress} - \left(\frac{M_{L}}{S_{tr}}\right)} \\ \textbf{ex} \ 150 mm^{3} &= \frac{8931 N^{*} mm}{60 N/mm^{2} - \left(\frac{115 N^{*} mm}{250 mm^{3}}\right)} \end{split}$$

Open Calculator 🕑

7) Section Modulus of Transformed Composite Section given Stress in Steel for Shored Members

8) Section Modulus of Transformed Composite Section given Stress in Steel for Unshored Members

14) Allowable Horizontal Shear for Individual Connector for over 2 Million Cycles

$$\begin{array}{c} \fbox{} \end{tabular} \left[\begin{matrix} \mathbf{X} \\ \mathbf{Z}_r = 2.1 \cdot \mathbf{w} \end{matrix} \right] & \end{tabular} \\ \hline \end{tabular} \left\{ \begin{matrix} \mathbf{X} \\ 436.8 \end{tabular} \mathbf{k} \\ \mathbf{N} \\ 436.8 \end{tabular} \mathbf{k} \\ \mathbf{N} \\ \mathbf{M} \\$$

fx
$$I_{h}=rac{\mathbf{Q}\cdot\mathbf{V_{r}}}{\mathbf{S_{r}}}$$
 ex $125\mathrm{mm^{4}}=rac{10\mathrm{mm^{3}}\cdot80\mathrm{kN}}{6.4\mathrm{kN/mm}}$

7/11

21) Shear Range due to Live and Impact Load given Horizontal Shear Range

Variables Used

- **d** Stud Diameter (Millimeter)
- fsteel stress Tensile Steel Stress (Newton per Square Millimeter)
- I_h Moment of Inertia of Transformed Section (Millimeter⁴)
- M_{D(shored)} Dead Load Moment for Shored Member (Newton Millimeter)
- M_{D(unshored)} Dead Load Moment for Unshored Member (Newton Millimeter)
- **M**_L Live Load Moment (Newton Millimeter)
- Q Static Moment (Cubic Millimeter)
- R Allowable Stress Multiplier
- Sr Horizontal Shear Range (Kilonewton per Millimeter)
- S_s Section Modulus of Steel Beam (Cubic Millimeter)
- Str Section Modulus of Transformed Composite Section (Cubic Millimeter)
- V_r Shear Range (Kilonewton)
- W Length of Channel (Millimeter)
- Zr Allowable Range of Horizontal Shear (Kilonewton)
- α Ratio of Web to Flange Yield Strength
- β Ratio of Web to Flange Area

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Volume in Cubic Millimeter (mm³)
 Volume Unit Conversion
- Measurement: **Pressure** in Newton per Square Millimeter (N/mm²) *Pressure Unit Conversion*
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Second Moment of Area in Millimeter⁴ (mm⁴) Second Moment of Area Unit Conversion G
- Measurement: Shear Range in Kilonewton per Millimeter (kN/mm) Shear Range Unit Conversion

Check other formula lists

- Additional Bridge Column
 Formulas
- Allowable Stress Design for Bridges Formulas
- Bearing on Milled Surfaces and Bridge Fasteners Formulas
- Composite Construction in Highway Bridges Formulas

- Load Factor Design (LFD)
 Formulas
- Number of Connectors in Bridges Formulas
- Stiffeners on Bridge Girders
 Formulas
- Suspension Cables Formulas G

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/23/2023 | 10:49:04 PM UTC

Please leave your feedback here ...

