

Traction Physics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Traction Physics Formulas

Traction Physics

1) Energy Available during Regeneration 🗗

$$\mathbf{E}_{\mathrm{R}} = 0.01072 \cdot \left(rac{\mathrm{W}_{\mathrm{e}}}{\mathrm{W}}
ight) \cdot \left(\mathrm{v}^2 - \mathrm{u}^2
ight)$$

Open Calculator

ex

$$0.002093 \mathrm{W^*h} = 0.01072 \cdot \left(rac{33000 \mathrm{AT~(US)}}{30000 \mathrm{AT~(US)}}
ight) \cdot \left((144 \mathrm{km/h})^2 - (111.6 \mathrm{km/h})^2
ight)$$

- 2) Energy Consumption for Overcoming Gradient and Tracking Resistance
- fx $\mathrm{E_{G}} = \mathrm{F_{t} \cdot V \cdot T_{train}}$

Open Calculator 🚰

- $= 3406.25 \text{W} + \text{h} = 545 \text{N} \cdot 150 \text{km/h} \cdot 9 \text{ min}$
- 3) Power Output of Motor using Efficiency of Gear Transmission

Open Calculator

$$ext{ex} egin{aligned} 7.692525 ext{W} &= rac{545 ext{N} \cdot 150 ext{km/h}}{3600 \cdot 0.82} \end{aligned}$$

4) Slip of Scherbius Drive given RMS Line Voltage 🗗

 $\mathbf{E} = \left(rac{E_b}{E_r}
ight) \cdot \mathrm{modulus}(\cos(heta))$

Open Calculator

5) Total Tractive Effort Required for Propulsion of Train

 $\mathbf{K} \mathbf{F}_{ ext{train}} = \mathbf{F}_{ ext{or}} + \mathbf{F}_{ ext{og}} + \mathbf{F}_{ ext{og}}$

Open Calculator

Open Calculator

6) Tractive Effort at Edge of Pinion

 $\mathbf{F}_{\mathrm{pin}} = rac{2 \cdot au_{\mathrm{e}}}{\mathrm{d}_{1}}$

7) Tractive Effort at Wheel

 $\mathbf{F_w} = rac{\mathbf{F_{pin} \cdot d_2}}{d}$ ex $33.03226\mathrm{N} = rac{64\mathrm{N} \cdot 0.80\mathrm{m}}{1.55\mathrm{m}}$

Open Calculator

1.55m

8) Tractive Effort during Acceleration

 $\mathbf{F}_{lpha} = (277.8 \cdot \mathrm{W_e} \cdot lpha) + (\mathrm{W} \cdot \mathrm{R_{sp}})$

Open Calculator

 $= 1.1E^6N = (277.8 \cdot 33000AT (US) \cdot 14.40km/h^*s) + (30000AT (US) \cdot 9.2)$

9) Tractive Effort on Driven Wheel

 $\mathbf{F}_{\mathrm{w}} = rac{\mathrm{i} \cdot \mathrm{i}_{\mathrm{o}} \cdot \left(rac{\eta_{\mathrm{dl}}}{100}
ight) \cdot T_{\mathrm{pp}}}{r_{\mathrm{d}}}$

Open Calculator

 $= 33.28024 N = \frac{2.55 \cdot 2 \cdot \left(\frac{5.2}{100}\right) \cdot 56.471 N^* m}{0.45 m}$

10) Tractive Effort Required during Free-Running

 $\mathbf{F}_{\mathrm{free}} = (98.1 \cdot \mathrm{W} \cdot \mathrm{G}) + (\mathrm{W} \cdot \mathrm{R}_{\mathrm{sp}})$

Open Calculator

 $= 252685.51 \text{N} = (98.1 \cdot 30000 \text{AT (US)} \cdot 0.52) + (30000 \text{AT (US)} \cdot 9.2)$

11) Tractive Effort Required for Linear and Angular Acceleration

fx $F_{\omegalpha}=27.88\cdot W\cdot lpha$

Open Calculator 🗗

 $97580.01 \text{N} = 27.88 \cdot 30000 \text{AT (US)} \cdot 14.40 \text{km/h*s}$

 $| 44928.86N = 1000 \cdot 30000AT (US) \cdot [g] \cdot \sin(0.3^{\circ})$

12) Tractive Effort Required to Overcome Effect of Gravity

 $\left[\mathbf{F}_{\mathrm{g}} = 1000 \cdot \mathrm{W} \cdot [\mathrm{g}] \cdot \sin(\angle \mathrm{D})
ight]$

Open Calculator 🚰

13) Tractive Effort Required to Overcome Effect of Gravity given Gradient during up Gradient

 $ag{F_{
m up}} = 98.1 \cdot {
m W} \cdot {
m G}$

Open Calculator

= 44635.51N = 98.1 · 30000AT (US) · 0.52

14) Tractive Effort Required to Overcome Train Resistance

fx $F_{
m or} = R_{
m sp} \cdot W$

Open Calculator

- $= 8050.001 N = 9.2 \cdot 30000 AT (US)$
- 15) Tractive Effort Required while going down Gradient
- $\mathbf{F}_{
 m down} = (\mathrm{W}\cdot\mathrm{R}_{
 m sp}) (98.1\cdot\mathrm{W}\cdot\mathrm{G})$

- Open Calculator
- $= -36585.504182N = (30000AT (US) \cdot 9.2) (98.1 \cdot 30000AT (US) \cdot 0.52)$

Variables Used

- ∠**D** Angle D (Degree)
- **d** Diameter of Wheel (Meter)
- d₁ Diameter of Pinion 1 (Meter)
- d₂ Diameter of Pinion 2 (Meter)
- E_b Back Emf (Volt)
- **E**_G Energy Consumption for Overcoming Gradient (Watt-Hour)
- E_r RMS Value of Rotor Side Line Voltage (Volt)
- ER Energy Consumption during Regeneration (Watt-Hour)
- F Force (Newton)
- F_{down} Down Gradient Tractive Effort (Newton)
- F_{free} Free Run Tractive Effort (Newton)
- **F**_a Gravity Tractive Effort (Newton)
- Fog Gravity Overcome Tractive Effort (Newton)
- For Resistance Overcome Tractive Effort (Newton)
- F_{pin} Pinion Edge Tractive Effort (Newton)
- **F**_t Tractive Effort (Newton)
- F_{train} Train Tractive Effort (Newton)
- F_{up} Tractive Effort of Up Gradient (Newton)
- **F**_w Wheel Tractive Effort (Newton)
- **F**_α Acceleration Tractive Effort (Newton)
- F_{ωα} Angular Accelration Tractive Effort (Newton)
- G Gradient
- i Gear Ratio of Transmission

- io Gear Ratio of Final Drive
- P Power Output Train (Watt)
- rd Effective Radius of Wheel (Meter)
- R_{sp} Specific Resistance Train
- S Slip
- Tpp Torque Output from Powerplant (Newton Meter)
- T_{train} Time Taken by Train (Minute)
- **u** Initial Velocity (Kilometer per Hour)
- **V** Final Velocity (Kilometer per Hour)
- **V** Velocity (Kilometer per Hour)
- W Weight of Train (Ton (Assay) (US))
- We Accelerating Weight of Train (Ton (Assay) (US))
- α Acceleration of Train (Kilometer per Hour Second)
- n_{dl} Efficiency of Driveline
- η_{gear} Gear Efficiency
- **0** Firing Angle (Degree)
- Te Engine Torque (Newton Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second²
 Gravitational acceleration on Earth
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: modulus, modulus Modulus of number
- Function: sin, sin(Angle)

 Trigonometric sine function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Ton (Assay) (US) (AT (US))
 Weight Unit Conversion
- Measurement: **Time** in Minute (min) *Time Unit Conversion*
- Measurement: Speed in Kilometer per Hour (km/h)
 Speed Unit Conversion
- Measurement: Acceleration in Kilometer per Hour Second (km/h*s)
 Acceleration Unit Conversion
- Measurement: Energy in Watt-Hour (W*h)
 Energy Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Electric Potential in Volt (V)
 Electric Potential Unit Conversion

• Measurement: Torque in Newton Meter (N*m)

Torque Unit Conversion

Check other formula lists

- Electric Drives Formulas
- Electric Train Physics Formulas Traction Physics Formulas •
- Mechanics of Train Movement Formulas [7
- Power & Energy Formulas
- Tractive Effort Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/17/2023 | 6:10:53 AM UTC

Please leave your feedback here...

