
calculatoratoz.com

Traction Physics Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Traction Physics Formulas

Traction Physics

1) Energy Available during Regeneration

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{E}_{\mathrm{R}}=0.01072 \cdot\left(\frac{\mathrm{~W}_{\mathrm{e}}}{\mathrm{~W}}\right) \cdot\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right)
$$

ex

$0.002093 \mathrm{~W}^{*} \mathrm{~h}=0.01072 \cdot\left(\frac{33000 \mathrm{AT}(\mathrm{US})}{30000 \mathrm{AT}(\mathrm{US})}\right) \cdot\left((144 \mathrm{~km} / \mathrm{h})^{2}-(111.6 \mathrm{~km} / \mathrm{h})^{2}\right)$
2) Energy Consumption for Overcoming Gradient and Tracking Resistance
$f_{\mathrm{x}} \mathrm{E}_{\mathrm{G}}=\mathrm{F}_{\mathrm{t}} \cdot \mathrm{V} \cdot \mathrm{T}_{\text {train }}$
Open Calculator
ex $3406.25 \mathrm{~W}^{*} \mathrm{~h}=545 \mathrm{~N} \cdot 150 \mathrm{~km} / \mathrm{h} \cdot 9 \mathrm{~min}$
3) Power Output of Motor using Efficiency of Gear Transmission
$\mathrm{fx} P=\frac{\mathrm{F}_{\mathrm{t}} \cdot \mathrm{V}}{3600 \cdot \eta_{\text {gear }}}$
Open Calculator
ex $7.692525 \mathrm{~W}=\frac{545 \mathrm{~N} \cdot 150 \mathrm{~km} / \mathrm{h}}{3600 \cdot 0.82}$
4) Slip of Scherbius Drive given RMS Line Voltage
$f \mathbf{f x}=\left(\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{E}_{\mathrm{r}}}\right) \cdot \operatorname{modulus}(\cos (\theta))$
ex $0.835418=\left(\frac{145 \mathrm{~V}}{156 \mathrm{~V}}\right) \cdot \operatorname{modulus}\left(\cos \left(26^{\circ}\right)\right)$
5) Total Tractive Effort Required for Propulsion of Train
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\text {train }}=\mathrm{F}_{\text {or }}+\mathrm{F}_{\mathrm{og}}+\mathrm{F}$
ex $8175.5 \mathrm{~N}=8050 \mathrm{~N}+123 \mathrm{~N}+2.5 \mathrm{~N}$
6) Tractive Effort at Edge of Pinion
$\mathrm{fx} \mathrm{F}_{\mathrm{pin}}=\frac{2 \cdot \tau_{\mathrm{e}}}{\mathrm{d}_{1}}$
ex $64 \mathrm{~N}=\frac{2 \cdot 4 \mathrm{~N}^{*} \mathrm{~m}}{0.125 \mathrm{~m}}$
7) Tractive Effort at Wheel
$f \mathrm{x} \mathrm{F}_{\mathrm{w}}=\frac{\mathrm{F}_{\mathrm{pin}} \cdot \mathrm{d}_{2}}{\mathrm{~d}}$
Open Calculator
ex $33.03226 \mathrm{~N}=\frac{64 \mathrm{~N} \cdot 0.80 \mathrm{~m}}{1.55 \mathrm{~m}}$
8) Tractive Effort during Acceleration
$f \mathrm{f} \mathrm{F}_{\alpha}=\left(277.8 \cdot \mathrm{~W}_{\mathrm{e}} \cdot \alpha\right)+\left(\mathrm{W} \cdot \mathrm{R}_{\mathrm{sp}}\right)$

ex $1.1 \mathrm{E}^{\wedge} 6 \mathrm{~N}=\left(277.8 \cdot 33000 \mathrm{AT}(\mathrm{US}) \cdot 14.40 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s}\right)+(30000 \mathrm{AT}(\mathrm{US}) \cdot 9.2)$
9) Tractive Effort on Driven Wheel
$f \times \mathrm{F}_{\mathrm{w}}=\frac{\mathrm{i} \cdot \mathrm{i}_{\mathrm{o}} \cdot\left(\frac{\eta_{\mathrm{dl}}}{100}\right) \cdot \mathrm{T}_{\mathrm{pp}}}{\mathrm{r}_{\mathrm{d}}}$
$\mathbf{e x} 33.28024 \mathrm{~N}=\frac{2.55 \cdot 2 \cdot\left(\frac{5.2}{100}\right) \cdot 56.471 \mathrm{~N}^{*} \mathrm{~m}}{0.45 \mathrm{~m}}$
10) Tractive Effort Required during Free-Running
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\text {free }}=(98.1 \cdot \mathrm{~W} \cdot \mathrm{G})+\left(\mathrm{W} \cdot \mathrm{R}_{\mathrm{sp}}\right)$
Open Calculator
ex $52685.51 \mathrm{~N}=(98.1 \cdot 30000 \mathrm{AT}(\mathrm{US}) \cdot 0.52)+(30000 \mathrm{AT}(\mathrm{US}) \cdot 9.2)$
11) Tractive Effort Required for Linear and Angular Acceleration
$\mathrm{fx}_{\mathrm{F}} \mathrm{F}_{\omega \alpha}=27.88 \cdot \mathrm{~W} \cdot \alpha$
Open Calculator
ex $97580.01 \mathrm{~N}=27.88 \cdot 30000 \mathrm{AT}(\mathrm{US}) \cdot 14.40 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s}$
12) Tractive Effort Required to Overcome Effect of Gravity
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{g}}=1000 \cdot \mathrm{~W} \cdot[\mathrm{~g}] \cdot \sin (\angle \mathrm{D})$
Open Calculator
ex $44928.86 \mathrm{~N}=1000 \cdot 30000 \mathrm{AT}(\mathrm{US}) \cdot[\mathrm{g}] \cdot \sin \left(0.3^{\circ}\right)$
13) Tractive Effort Required to Overcome Effect of Gravity given Gradient during up Gradient
$f \mathrm{f} \mathrm{F}_{\mathrm{up}}=98.1 \cdot \mathrm{~W} \cdot \mathrm{G}$
ex $44635.51 \mathrm{~N}=98.1 \cdot 30000 \mathrm{AT}(\mathrm{US}) \cdot 0.52$
14) Tractive Effort Required to Overcome Train Resistance
$\mathrm{fx} \mathrm{F}_{\text {or }}=\mathrm{R}_{\mathrm{sp}} \cdot \mathrm{W}$

ex $8050.001 \mathrm{~N}=9.2 \cdot 30000 \mathrm{AT}(\mathrm{US})$

15) Tractive Effort Required while going down Gradient
$\mathrm{fx} \mathrm{F}_{\text {down }}=\left(\mathrm{W} \cdot \mathrm{R}_{\mathrm{sp}}\right)-(98.1 \cdot \mathrm{~W} \cdot \mathrm{G})$
ex $-36585.504182 \mathrm{~N}=(30000 \mathrm{AT}(\mathrm{US}) \cdot 9.2)-(98.1 \cdot 30000 \mathrm{AT}(\mathrm{US}) \cdot 0.52)$

Variables Used

- $\angle \mathrm{D}$ Angle D (Degree)
- d Diameter of Wheel (Meter)
- \mathbf{d}_{1} Diameter of Pinion 1 (Meter)
- \mathbf{d}_{2} Diameter of Pinion 2 (Meter)
- $\mathbf{E}_{\mathbf{b}}$ Back Emf (Volt)
- $\mathbf{E}_{\mathbf{G}}$ Energy Consumption for Overcoming Gradient (Watt-Hour)
- E_{r} RMS Value of Rotor Side Line Voltage (Volt)
- $\mathbf{E}_{\mathbf{R}}$ Energy Consumption during Regeneration (Watt-Hour)
- F Force (Newton)
- $F_{\text {down }}$ Down Gradient Tractive Effort (Newton)
- Ffree Free Run Tractive Effort (Newton)
- $\mathbf{F g}_{\mathbf{g}}$ Gravity Tractive Effort (Newton)
- Fog $_{\text {og }}$ Gravity Overcome Tractive Effort (Newton)
- For Resistance Overcome Tractive Effort (Newton)
- Fin $_{\text {pin }}$ Pinion Edge Tractive Effort (Newton)
- $\mathbf{F}_{\mathbf{t}}$ Tractive Effort (Newton)
- $F_{\text {train }}$ Train Tractive Effort (Newton)
- Fup $_{\text {up }}$ Tractive Effort of Up Gradient (Newton)
- $\mathbf{F}_{\mathbf{w}}$ Wheel Tractive Effort (Newton)
- F_{α} Acceleration Tractive Effort (Newton)
- $\mathrm{F}_{\boldsymbol{\omega} \boldsymbol{\alpha}}$ Angular Accelration Tractive Effort (Newton)
- G Gradient
- i Gear Ratio of Transmission
- $\mathbf{i}_{\mathbf{0}}$ Gear Ratio of Final Drive
- P Power Output Train (Watt)
- $\mathbf{r}_{\mathbf{d}}$ Effective Radius of Wheel (Meter)
- $\mathbf{R}_{\mathbf{s p}}$ Specific Resistance Train
- s Slip
- $\mathbf{T p p}_{\mathbf{p p}}$ Torque Output from Powerplant (Newton Meter)
- $\mathrm{T}_{\text {train }}$ Time Taken by Train (Minute)
- u Initial Velocity (Kilometer per Hour)
- V Final Velocity (Kilometer per Hour)
- V Velocity (Kilometer per Hour)
- W Weight of Train (Ton (Assay) (US))
- W \mathbf{e} Accelerating Weight of Train (Ton (Assay) (US))
- α Acceleration of Train (Kilometer per Hour Second)
- $\eta_{\text {dI }}$ Efficiency of Driveline
- $\eta_{\text {gear }}$ Gear Efficiency
- $\boldsymbol{\theta}$ Firing Angle (Degree)
- $\mathbf{T}_{\mathbf{e}}$ Engine Torque (Newton Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: cos, \cos (Angle)

Trigonometric cosine function

- Function: modulus, modulus

Modulus of number

- Function: $\boldsymbol{\operatorname { s i n }}, \boldsymbol{\operatorname { s i n }}$ (Angle)

Trigonometric sine function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Ton (Assay) (US) (AT (US))

Weight Unit Conversion

- Measurement: Time in Minute (min)

Time Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h)

Speed Unit Conversion

- Measurement: Acceleration in Kilometer per Hour Second (km/h*s)

Acceleration Unit Conversion

- Measurement: Energy in Watt-Hour (W*h)

Energy Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Torque in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$) Torque Unit Conversion

Check other formula lists

- Electric Drives Formulas
- Power \& Energy Formulas
- Electric Train Physics Formulas
- Mechanics of Train Movement
- Traction Physics Formulas $\sqrt{ }$ Formulas
- Tractive Effort Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

