
calculatoratoz.com

unitsconverters.com

Important Formulas of Dodecahedron

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 33 Important Formulas of Dodecahedron

Important Formulas of Dodecahedron

Area of Dodecahedron

1) Face Area of Dodecahedron
$1 \sqrt{1} \quad$ Open Calculator $\mathbb{}$
ex $172.0477 \mathrm{~m}^{2}=\frac{1}{4} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot(10 \mathrm{~m})^{2}$
2) Face Area of Dodecahedron given Midsphere Radius

$$
\mathrm{A}_{\text {Face }}=\frac{1}{4} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot\left(\frac{4 \cdot \mathrm{r}_{\mathrm{m}}}{3+\sqrt{5}}\right)^{2}
$$

ex $169.6856 \mathrm{~m}^{2}=\frac{1}{4} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot\left(\frac{4 \cdot 13 \mathrm{~m}}{3+\sqrt{5}}\right)^{2}$

3) Lateral Surface Area of Dodecahedron

$f \times \mathrm{LSA}=\frac{5}{2} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot \mathrm{l}_{\mathrm{e}}^{2}$

Open Calculator

ex $1720.477 \mathrm{~m}^{2}=\frac{5}{2} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot(10 \mathrm{~m})^{2}$
4) Lateral Surface Area of Dodecahedron given Circumsphere Radius
$\mathrm{LSA}=\frac{5}{2} \cdot \sqrt{25+(10 \cdot \sqrt{5})}$.

$$
\left(\frac{4 \cdot r_{c}}{\sqrt{3} \cdot(1+\sqrt{5})}\right)^{2}
$$

5) Lateral Surface Area of Dodecahedron given Total Surface Area

fa $\operatorname{LSA}=\frac{5}{6} \cdot \mathrm{TSA}$
Open Calculator
ex $1750 \mathrm{~m}^{2}=\frac{5}{6} \cdot 2100 \mathrm{~m}^{2}$
6) Total Surface Area of Dodecahedron
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{TSA}}=3 \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot 1_{\mathrm{e}}^{2}$
Open Calculator
ex $2064.573 \mathrm{~m}^{2}=3 \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot(10 \mathrm{~m})^{2}$
7) Total Surface Area of Dodecahedron given Face Perimeter \longleftarrow
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{TSA}}=\frac{3}{25} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot \mathrm{P}_{\text {Face }}^{2}$
Open Calculator
ex $2064.573 \mathrm{~m}^{2}=\frac{3}{25} \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot(50 \mathrm{~m})^{2}$
8) Total Surface Area of Dodecahedron given Volume
fx
$\mathrm{TSA}=3 \cdot \sqrt{25+(10 \cdot \sqrt{5})} \cdot\left(\frac{4 \cdot \mathrm{~V}}{15+(7 \cdot \sqrt{5})}\right)^{\frac{2}{3}}$

Diagonal of Dodecahedron ©

9) Face Diagonal of Dodecahedron
$f \mathrm{fx} \mathrm{d}_{\text {Face }}=\left(\frac{1+\sqrt{5}}{2}\right) \cdot l_{\mathrm{e}}$
ex $16.18034 \mathrm{~m}=\left(\frac{1+\sqrt{5}}{2}\right) \cdot 10 \mathrm{~m}$
10) Face Diagonal of Dodecahedron given Insphere Radius
$f \mathbf{x} \mathrm{~d}_{\text {Face }}=(1+\sqrt{5})$.

$$
\mathrm{ex} 15.98394 \mathrm{~m}=(1+\sqrt{5}) \cdot \frac{11 \mathrm{~m}}{\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}}}
$$

11) Face Diagonal of Dodecahedron given Total Surface Area
$f \times d_{\text {Face }}=\frac{1+\sqrt{5}}{2} \cdot \sqrt{\frac{\mathrm{TSA}}{3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}$
Open Calculator
$\mathbf{e x} 16.31857 \mathrm{~m}=\frac{1+\sqrt{5}}{2} \cdot \sqrt{\frac{2100 \mathrm{~m}^{2}}{3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}$
12) Space Diagonal of Dodecahedron
$f \mathrm{x} \mathrm{d}_{\text {Space }}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{l_{\mathrm{e}}}{2}$
Open Calculator
ex $28.02517 \mathrm{~m}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{10 \mathrm{~m}}{2}$
13) Space Diagonal of Dodecahedron given Lateral Surface Area

fx
 Open Calculator

$$
\mathrm{d}_{\text {Space }}=\frac{\sqrt{3} \cdot(1+\sqrt{5})}{2} \cdot \sqrt{\frac{2 \cdot \mathrm{LSA}}{5 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}
$$

ex $28.2646 \mathrm{~m}=\frac{\sqrt{3} \cdot(1+\sqrt{5})}{2}$.

$$
\sqrt{\frac{2 \cdot 1750 \mathrm{~m}^{2}}{5 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}
$$

14) Space Diagonal of Dodecahedron given Perimeter
$f \mathrm{x} \mathrm{d}_{\text {Space }}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{\mathrm{P}}{60}$
Open Calculator
ex $28.02517 \mathrm{~m}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{300 \mathrm{~m}}{60}$

Edge Length of Dodecahedron

15) Edge Length of Dodecahedron given Circumsphere Radius
$f \times l_{\mathrm{e}}=\frac{4 \cdot r_{c}}{\sqrt{3} \cdot(1+\sqrt{5})}$
Open Calculator
ex $9.991019 \mathrm{~m}=\frac{4 \cdot 14 \mathrm{~m}}{\sqrt{3} \cdot(1+\sqrt{5})}$
16) Edge Length of Dodecahedron given Insphere Radius
$f \times l_{\mathrm{e}}=\frac{2 \cdot \mathrm{r}_{\mathrm{i}}}{\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}}}$
Open Calculator
$\mathrm{ex} 9.878615 \mathrm{~m}=\frac{2 \cdot 11 \mathrm{~m}}{\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}}}$

17) Edge Length of Dodecahedron given Total Surface Area

$\operatorname{ex} 10.08543 \mathrm{~m}=\sqrt{\frac{2100 \mathrm{~m}^{2}}{3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}$
18) Edge Length of Dodecahedron given Volume
$f \times l_{e}=\left(\frac{4 \cdot V}{15+(7 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$
$\operatorname{ex} 10.01602 \mathrm{~m}=\left(\frac{4 \cdot 7700 \mathrm{~m}^{3}}{15+(7 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$

Perimeter of Dodecahedron

19) Face Perimeter of Dodecahedron
$f \times P_{\text {Face }}=5 \cdot l_{e}$
ex $50 \mathrm{~m}=5 \cdot 10 \mathrm{~m}$

20) Face Perimeter of Dodecahedron given Face Area

$f \times \sqrt{\mathrm{P}_{\text {Face }}=5 \cdot \sqrt{\frac{4 \cdot \mathrm{~A}_{\text {Face }}}{\sqrt{25+(10 \cdot \sqrt{5})}}}}$

$$
\mathbf{e x}^{\mathbf{e x}} 50.42716 \mathrm{~m}=5 \cdot \sqrt{\frac{4 \cdot 175 \mathrm{~m}^{2}}{\sqrt{25+(10 \cdot \sqrt{5})}}}
$$

21) Perimeter of Dodecahedron
$f \times P=30 \cdot l_{e}$
ex $300 \mathrm{~m}=30 \cdot 10 \mathrm{~m}$
22) Perimeter of Dodecahedron given Circumsphere Radius
$f \times P=\frac{120 \cdot r_{c}}{\sqrt{3} \cdot(1+\sqrt{5})}$
ex $299.7306 \mathrm{~m}=\frac{120 \cdot 14 \mathrm{~m}}{\sqrt{3} \cdot(1+\sqrt{5})}$
23) Perimeter of Dodecahedron given Total Surface Area

Radius of Dodecahedron

24) Circumsphere Radius of Dodecahedron $\boxed{\boxed{ }}$

$f_{\mathrm{x}} \mathrm{r}_{\mathrm{c}}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{l_{e}}{4}$
ex $14.01259 \mathrm{~m}=\sqrt{3} \cdot(1+\sqrt{5}) \cdot \frac{10 \mathrm{~m}}{4}$
25) Circumsphere Radius of Dodecahedron given Total Surface Area
$f \mathbf{x} r_{c}=\sqrt{3} \cdot \frac{1+\sqrt{5}}{4}$.
Open Calculator
ex $14.1323 \mathrm{~m}=\sqrt{3} \cdot \frac{1+\sqrt{5}}{4}$.

$$
\sqrt{\frac{2100 \mathrm{~m}^{2}}{3 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}
$$

26) Insphere Radius of Dodecahedron
$f \mathbf{f x} r_{i}=\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}} \cdot \frac{l_{\mathrm{e}}}{2}$
Open Calculator
$\operatorname{ex} 11.13516 \mathrm{~m}=\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}} \cdot \frac{10 \mathrm{~m}}{2}$
27) Insphere Radius of Dodecahedron given Perimeter
$\mathrm{fx}_{\mathrm{x}}=\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}} \cdot \frac{\mathrm{P}}{60}$
$\operatorname{ex} 11.13516 \mathrm{~m}=\sqrt{\frac{25+(11 \cdot \sqrt{5})}{10}} \cdot \frac{300 \mathrm{~m}}{60}$
28) Midsphere Radius of Dodecahedron
$f \mathrm{x} \mathrm{r}_{\mathrm{m}}=\frac{3+\sqrt{5}}{4} \cdot l_{\mathrm{e}}$
Open Calculator
ex $13.09017 \mathrm{~m}=\frac{3+\sqrt{5}}{4} \cdot 10 \mathrm{~m}$
29) Midsphere Radius of Dodecahedron given Lateral Surface Area
$f \mathrm{x}) \mathrm{r}_{\mathrm{m}}=\frac{3+\sqrt{5}}{4} \cdot \sqrt{\frac{2 \cdot \mathrm{LSA}}{5 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}$
Open Calculator
$\operatorname{ex} 13.202 \mathrm{~m}=\frac{3+\sqrt{5}}{4} \cdot \sqrt{\frac{2 \cdot 1750 \mathrm{~m}^{2}}{5 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}}$

Volume of Dodecahedron

30) Volume of Dodecahedron

$\mathrm{fx} \mathrm{V}=\frac{(15+(7 \cdot \sqrt{5})) \cdot \mathrm{l}_{\mathrm{e}}^{3}}{4}$
$\operatorname{ex} 7663.119 \mathrm{~m}^{3}=\frac{(15+(7 \cdot \sqrt{5})) \cdot(10 \mathrm{~m})^{3}}{4}$
31) Volume of Dodecahedron given Circumsphere Radius
$\mathrm{V}=\frac{1}{4} \cdot(15+(7 \cdot \sqrt{5})) \cdot\left(\frac{4 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{3} \cdot(1+\sqrt{5})}\right)^{3}$
ex $7642.49 \mathrm{~m}^{3}=\frac{1}{4} \cdot(15+(7 \cdot \sqrt{5})) \cdot\left(\frac{4 \cdot 14 \mathrm{~m}}{\sqrt{3} \cdot(1+\sqrt{5})}\right)^{3}$
32) Volume of Dodecahedron given Lateral Surface Area

ex $7861.206 \mathrm{~m}^{3}=\frac{1}{4} \cdot(15+(7 \cdot \sqrt{5})) \cdot\left(\frac{2 \cdot 1750 \mathrm{~m}^{2}}{5 \cdot \sqrt{25+(10 \cdot \sqrt{5})}}\right)^{\frac{3}{2}}$
33) Volume of Dodecahedron given Perimeter
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=\frac{1}{4} \cdot(15+(7 \cdot \sqrt{5})) \cdot\left(\frac{\mathrm{P}}{30}\right)^{3}$
ex $7663.119 \mathrm{~m}^{3}=\frac{1}{4} \cdot(15+(7 \cdot \sqrt{5})) \cdot\left(\frac{300 \mathrm{~m}}{30}\right)^{3}$

Variables Used

- Aface Face Area of Dodecahedron (Square Meter)
- $\mathbf{d}_{\text {Face }}$ Face Diagonal of Dodecahedron (Meter)
- $\mathbf{d}_{\text {Space }}$ Space Diagonal of Dodecahedron (Meter)
- $\mathbf{I}_{\mathbf{e}}$ Edge Length of Dodecahedron (Meter)
- LSA Lateral Surface Area of Dodecahedron (Square Meter)
- P Perimeter of Dodecahedron (Meter)
- Pace Face Perimeter of Dodecahedron (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumsphere Radius of Dodecahedron (Meter)
- $\mathbf{r}_{\mathbf{j}}$ Insphere Radius of Dodecahedron (Meter)
- $\mathbf{r}_{\mathbf{m}}$ Midsphere Radius of Dodecahedron (Meter)
- TSA Total Surface Area of Dodecahedron (Square Meter)
- V Volume of Dodecahedron (Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Cube Formulas \longleftarrow
- Dodecahedron Formulas
- Icosahedron Formulas
- Octahedron Formulas
- Tetrahedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

