
calculatoratoz.com

unitsconverters.com

Surveying Vertical Curves Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Surveying Vertical Curves Formulas

Surveying Vertical Curves ©

1) Allowable Centrifugal Acceleration given Length
$f \mathbf{f x}=\left(\left(\mathrm{g}_{1}\right)-\left(\mathrm{g}_{2}\right)\right) \cdot \frac{\mathrm{V}^{2}}{100 \cdot \mathrm{~L}_{\mathrm{c}}}$
Open Calculator
ex $0.600649 \mathrm{~m} / \mathrm{s}^{2}=((2.2)-(-1.5)) \cdot \frac{(100 \mathrm{~km} / \mathrm{h})^{2}}{100 \cdot 616 \mathrm{~m}}$
2) Change of Grade given Length
fx $N=L \cdot P_{N}$
Open Calculator
ex $1.4=20 \mathrm{~m} \cdot 0.07$
3) Downgrade given Length based on Centrifugal Ratio
$f x g_{2}=g_{1}-\left(L_{c} \cdot 100 \cdot \frac{\mathrm{f}}{\mathrm{V}^{2}}\right)$
ex $-1.496=2.2-\left(616 \mathrm{~m} \cdot 100 \cdot \frac{0.6 \mathrm{~m} / \mathrm{s}^{2}}{(100 \mathrm{~km} / \mathrm{h})^{2}}\right)$
4) Length given S is Less than L and Change of Grade
$f \mathrm{x} \mathrm{L}_{\mathrm{c}}=\mathrm{N} \cdot \frac{\mathrm{SD}^{2}}{800 \cdot \mathrm{~h}}$
Open Calculator
ex $635.5588 \mathrm{~m}=3.6 \cdot \frac{(490 \mathrm{~m})^{2}}{800 \cdot 1.7 \mathrm{~m}}$
5) Length of Curve Based on Centrifugal Ratio
$f \mathbf{x} L_{c}=\left(\left(g_{1}\right)-\left(g_{2}\right)\right) \cdot \frac{\mathrm{V}^{2}}{100 \cdot f}$
Open Calculator
ex $616.6667 \mathrm{~m}=((2.2)-(-1.5)) \cdot \frac{(100 \mathrm{~km} / \mathrm{h})^{2}}{100 \cdot 0.6 \mathrm{~m} / \mathrm{s}^{2}}$
6) Length of Curve given Change in Grade where S is more than L
fx $\mathrm{L}_{\mathrm{c}}=2 \cdot \mathrm{SD}-\left(800 \cdot \frac{\mathrm{~h}}{\mathrm{~N}}\right)$
Open Calculator
ex $602.2222 \mathrm{~m}=2 \cdot 490 \mathrm{~m}-\left(800 \cdot \frac{1.7 \mathrm{~m}}{3.6}\right)$
7) Length of Curve when Height of Observer and Object are Same
$\mathrm{fx} \mathrm{L}_{\mathrm{c}}=2 \cdot \mathrm{SD}-\left(800 \cdot \frac{\mathrm{~h}}{\left(\mathrm{~g}_{1}\right)-\left(\mathrm{g}_{2}\right)}\right)$
Open Calculator
ex $612.4324 \mathrm{~m}=2 \cdot 490 \mathrm{~m}-\left(800 \cdot \frac{1.7 \mathrm{~m}}{(2.2)-(-1.5)}\right)$
8) Length of Curve when S is Less than L
$f \times L_{c}=S D^{2} \cdot \frac{\left(g_{1}\right)-\left(g_{2}\right)}{200 \cdot\left(\sqrt{\mathrm{H}}+\sqrt{\mathrm{h}_{2}}\right)^{2}}$
ex $705.2362 \mathrm{~m}=(490 \mathrm{~m})^{2}$.

$$
\frac{(2.2)-(-1.5)}{(\sqrt{1.2 \mathrm{~m}}+\sqrt{2 \mathrm{~m}})^{2}}
$$

9) Length of Curve when S is Less than L and $h 1$ and $h 2$ are same
$f \mathbf{x} \mathrm{~L}_{\mathrm{c}}=\left(\left(\mathrm{g}_{1}\right)-\left(\mathrm{g}_{2}\right)\right) \cdot \frac{\mathrm{SD}^{2}}{800 \cdot \mathrm{~h}}$
Open Calculator
10) Length of Curve when Sight Distance is More
$f_{\mathrm{x}} \mathrm{L}_{\mathrm{c}}=2 \cdot \mathrm{SD}-\frac{200 \cdot\left(\sqrt{\mathrm{H}}+\sqrt{\mathrm{h}_{2}}\right)^{2}}{\left(\mathrm{~g}_{1}\right)-\left(\mathrm{g}_{2}\right)}$
$\operatorname{ex} 639.5467 \mathrm{~m}=2 \cdot 490 \mathrm{~m}-\frac{200 \cdot(\sqrt{1.2 \mathrm{~m}}+\sqrt{2 \mathrm{~m}})^{2}}{(2.2)-(-1.5)}$

11) Length of Vertical Curve $\sqrt{ }$

$\mathrm{fx}=\frac{\mathrm{N}}{\mathrm{P}_{\mathrm{N}}}$
ex $51.42857 \mathrm{~m}=\frac{3.6}{0.07}$
12) Permissible Grade given Length
$f \times P_{N}=\frac{N}{L}$
Open Calculator 〔
ex $0.18=\frac{3.6}{20 \mathrm{~m}}$
13) Sight Distance when Length of Curve is Less
$\mathrm{fx} \mathrm{SD}=0.5 \cdot \mathrm{~L}_{\mathrm{c}}+\frac{100 \cdot\left(\sqrt{\mathrm{H}}+\sqrt{\mathrm{h}_{2}}\right)^{2}}{\left(\mathrm{~g}_{1}\right)-\left(\mathrm{g}_{2}\right)}$
Open Calculator
ex $478.2267 \mathrm{~m}=0.5 \cdot 616 \mathrm{~m}+\frac{100 \cdot(\sqrt{1.2 \mathrm{~m}}+\sqrt{2 \mathrm{~m}})^{2}}{(2.2)-(-1.5)}$
14) Sight Distance when Length of Curve is Less and Both Height of Observer and Object is Same
$\mathrm{fx} \mathrm{SD}=\left(\frac{\mathrm{L}_{\mathrm{c}}}{2}\right)+\left(400 \cdot \frac{\mathrm{~h}}{\left(\mathrm{~g}_{1}\right)-\left(\mathrm{g}_{2}\right)}\right)$
Open Calculator
ex $491.7838 \mathrm{~m}=\left(\frac{616 \mathrm{~m}}{2}\right)+\left(400 \cdot \frac{1.7 \mathrm{~m}}{(2.2)-(-1.5)}\right)$
15) Sight Distance when S is Less than $L \boxed{\square}$
$f_{x} S=\left(\frac{1}{\mathrm{c}}\right) \cdot\left(\sqrt{\mathrm{H}}+\sqrt{\mathrm{h}_{2}}\right)$
Open Calculator
ex $5.019317 \mathrm{~m}=\left(\frac{1}{0.5}\right) \cdot(\sqrt{1.2 \mathrm{~m}}+\sqrt{2 \mathrm{~m}})$
16) Sight Distance when S is Less than L and $h 1$ and $h 2$ are same
$f x \mathrm{SD}=\sqrt{\frac{800 \cdot \mathrm{~h} \cdot \mathrm{~L}_{\mathrm{c}}}{\left(\mathrm{g}_{1}\right)-\left(\mathrm{g}_{2}\right)}}$
ex $475.8378 \mathrm{~m}=\sqrt{\frac{800 \cdot 1.7 \mathrm{~m} \cdot 616 \mathrm{~m}}{(2.2)-(-1.5)}}$
17) Tangential Correction
$\mathrm{fx} \mathrm{c}=\frac{\mathrm{g}_{1}-\mathrm{g}_{2}}{4} \cdot \mathrm{n}$
ex $0.41625=\frac{2.2--1.5}{4} \cdot 0.45$
18) Upgrade given Length based on Centrifugal Ratio
$\mathrm{fx} \mathrm{g}_{1}=\left(\mathrm{L}_{\mathrm{c}} \cdot 100 \cdot \frac{\mathrm{f}}{\mathrm{V}^{2}}\right)+\left(\mathrm{g}_{2}\right)$
$\operatorname{ex} 2.196=\left(616 \mathrm{~m} \cdot 100 \cdot \frac{0.6 \mathrm{~m} / \mathrm{s}^{2}}{(100 \mathrm{~km} / \mathrm{h})^{2}}\right)+(-1.5)$
19) Velocity given Length
$\mathrm{fx} \mathrm{V}=\sqrt{\frac{\mathrm{L}_{\mathrm{c}} \cdot 100 \cdot \mathrm{f}}{\mathrm{g}_{1}-\left(\mathrm{g}_{2}\right)}}$
ex $99.94593 \mathrm{~km} / \mathrm{h}=\sqrt{\frac{616 \mathrm{~m} \cdot 100 \cdot 0.6 \mathrm{~m} / \mathrm{s}^{2}}{2.2-(-1.5)}}$

Variables Used

- C Tangential Correction
- fAllowable Centrifugal Acceleration (Meter per Square Second)
- $\mathbf{g}_{\mathbf{1}}$ Upgrade
- g_{2} Downgrade
- \mathbf{h} Height of Vertical Curves (Meter)
- H Height of Observer (Meter)
- $\mathbf{h}_{\mathbf{2}}$ Height of Object (Meter)
- L Length of Vertical Curve (Meter)
- L_{c} Length of Curve (Meter)
- n Number of Chords
- \mathbf{N} Change in Grade
- $\mathbf{P}_{\mathbf{N}}$ Permissible Rate
- S Sight Distance (Meter)
- SD Sight Distance SSD (Meter)
- V Vehicle Velocity (Kilometer per Hour)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h)

Speed Unit Conversion

- Measurement: Acceleration in Meter per Square Second (m/s²)

Acceleration Unit Conversion

Check other formula lists

- Photogrammetry Stadia and Compass Surveying Formulas
- Compass Surveying Formulas (Theory of Errors Formulas
- Electromagnetic Distance Measurement Formulas
- Measurement of Distance with Tapes Formulas
- Surveying Curves Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch
1/20/2024 | 2:49:53 AM UTC
Please leave your feedback here...

