
calculatoratoz.com

unitsconverters.com

Important Formulas of Cone

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 33 Important Formulas of Cone

Important Formulas of Cone ©

Base Circumference of Cone ©

1) Base Circumference of Cone
$f_{\mathrm{x}} \mathrm{C}_{\text {Base }}=2 \cdot \pi \cdot \mathrm{r}_{\text {Base }}$
Open Calculator
ex $62.83185 \mathrm{~m}=2 \cdot \pi \cdot 10 \mathrm{~m}$
2) Base Circumference of Cone given Base Area $\boxed{\square}$
$f_{\mathrm{x}} \mathrm{C}_{\text {Base }}=2 \cdot \sqrt{\pi \cdot \mathrm{~A}_{\text {Base }}}$
Open Calculator
ex $62.91587 \mathrm{~m}=2 \cdot \sqrt{\pi \cdot 315 \mathrm{~m}^{2}}$
3) Base Circumference of Cone given Lateral Surface Area and Slant Height $\boxed{\Omega}$
$\mathrm{fx} \mathrm{C}_{\text {Base }}=2 \cdot \frac{\mathrm{LSA}}{\mathrm{h}_{\text {Slant }}}$
ex $63.63636 \mathrm{~m}=2 \cdot \frac{350 \mathrm{~m}^{2}}{11 \mathrm{~m}}$
4) Base Circumference of Cone given Volume
$\mathrm{fx} \mathrm{C}_{\text {Base }}=2 \cdot \pi \cdot \sqrt{\frac{3 \cdot \mathrm{~V}}{\pi \cdot \mathrm{~h}}}$
ex $62.61555 \mathrm{~m}=2 \cdot \pi \cdot \sqrt{\frac{3 \cdot 520 \mathrm{~m}^{3}}{\pi \cdot 5 \mathrm{~m}}}$

Base Radius of Cone

5) Base Radius of Cone given Base Area
$f \times r_{\text {Base }}=\sqrt{\frac{A_{\text {Base }}}{\pi}}$
Open Calculator
ex $10.01337 \mathrm{~m}=\sqrt{\frac{315 \mathrm{~m}^{2}}{\pi}}$
6) Base Radius of Cone given Lateral Surface Area and Slant Height \longleftarrow
$\mathrm{fx}_{\mathrm{x}} \mathrm{r}_{\text {Base }}=\frac{\mathrm{LSA}}{\pi \cdot \mathrm{h}_{\mathrm{Slant}}}$
Open Calculator
ex $10.12804 \mathrm{~m}=\frac{350 \mathrm{~m}^{2}}{\pi \cdot 11 \mathrm{~m}}$
7) Base Radius of Cone given Total Surface Area and Slant Height
$f x r_{\text {Base }}=\frac{1}{2} \cdot\left(\sqrt{h_{\text {Slant }}^{2}+\frac{4 \cdot T S A}{\pi}}-h_{\text {Slant }}\right)$

Open Calculator

ex $10.05397 \mathrm{~m}=\frac{1}{2} \cdot\left(\sqrt{(11 \mathrm{~m})^{2}+\frac{4 \cdot 665 \mathrm{~m}^{2}}{\pi}}-(11 \mathrm{~m})\right)$
8) Base Radius of Cone given Volume \int
$f x r_{\text {Base }}=\sqrt{\frac{3 \cdot V}{\pi \cdot h}}$
Open Calculator
ex $9.965575 \mathrm{~m}=\sqrt{\frac{3 \cdot 520 \mathrm{~m}^{3}}{\pi \cdot 5 \mathrm{~m}}}$

Height of Cone

9) Height of Cone given Lateral Surface Area
$f \times h=\sqrt{\left(\frac{L S A}{\pi \cdot r_{\text {Base }}}\right)^{2}-r_{\text {Base }}^{2}}$
ex $4.911054 \mathrm{~m}=\sqrt{\left(\frac{350 \mathrm{~m}^{2}}{\pi \cdot(10 \mathrm{~m})}\right)^{2}-(10 \mathrm{~m})^{2}}$
10) Height of Cone given Total Surface Area
$\mathbf{f x} h=\sqrt{\left(\frac{\mathrm{TSA}}{\pi \cdot \mathrm{r}_{\text {Base }}}-\mathrm{r}_{\text {Base }}\right)^{2}-\mathrm{r}_{\text {Base }}^{2}}$
ex $4.971464 \mathrm{~m}=\sqrt{\left(\frac{665 \mathrm{~m}^{2}}{\pi \cdot(10 \mathrm{~m})}-(10 \mathrm{~m})\right)^{2}-(10 \mathrm{~m})^{2}}$
11) Height of Cone given Volume
$\mathrm{fx} \mathrm{h}=\frac{3 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}_{\text {Base }}^{2}}$

Open Calculator ©

$\mathrm{ex} 4.965634 \mathrm{~m}=\frac{3 \cdot 520 \mathrm{~m}^{3}}{\pi \cdot(10 \mathrm{~m})^{2}}$
12) Height of Cone given Volume and Base Area
$\mathrm{fx} \mathrm{h}=\frac{3 \cdot \mathrm{~V}}{\mathrm{~A}_{\text {Base }}}$
ex $4.952381 \mathrm{~m}=\frac{3 \cdot 520 \mathrm{~m}^{3}}{315 \mathrm{~m}^{2}}$
13) Height of Cone given Volume and Base Circumference
$\mathrm{fx} h=\frac{12 \cdot \pi \cdot \mathrm{~V}}{\mathrm{C}_{\text {Base }}^{2}}$
$\mathrm{ex} 5.445427 \mathrm{~m}=\frac{12 \cdot \pi \cdot 520 \mathrm{~m}^{3}}{(60 \mathrm{~m})^{2}}$

Slant Height of Cone

14) Slant Height of Cone

$$
f \times h_{\text {Slant }}=\sqrt{\mathrm{h}^{2}+\mathrm{r}_{\text {Base }}^{2}}
$$

ex $11.18034 \mathrm{~m}=\sqrt{(5 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}}$
15) Slant Height of Cone given Lateral Surface Area
$f \times \mathrm{h}_{\text {Slant }}=\frac{\mathrm{LSA}}{\pi \cdot \mathrm{r}_{\text {Base }}}$
Open Calculator
ex $11.14085 \mathrm{~m}=\frac{350 \mathrm{~m}^{2}}{\pi \cdot 10 \mathrm{~m}}$
16) Slant Height of Cone given Total Surface Area
$\mathrm{fx}_{\mathrm{x}} \mathrm{h}_{\text {Slant }}=\frac{\mathrm{TSA}}{\pi \cdot \mathrm{r}_{\text {Base }}}-\mathrm{r}_{\text {Base }}$
ex $11.16761 \mathrm{~m}=\frac{665 \mathrm{~m}^{2}}{\pi \cdot 10 \mathrm{~m}}-10 \mathrm{~m}$
17) Slant Height of Cone given Volume
$\mathrm{fx}_{\mathrm{x}} \mathrm{h}_{\text {Slant }}=\sqrt{\left(\frac{3 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}_{\text {Base }}^{2}}\right)^{2}+\mathrm{r}_{\text {Base }}^{2}}$

Surface Area of Cone ©

18) Base Area of Cone

$f \times A_{\text {Base }}=\pi \cdot r_{\text {Base }}^{2}$
ex $314.1593 \mathrm{~m}^{2}=\pi \cdot(10 \mathrm{~m})^{2}$
19) Base Area of Cone given Lateral Surface Area and Slant Height Ψ
$f \times A_{\text {Base }}=\pi \cdot\left(\frac{\mathrm{LSA}}{\pi \cdot \mathrm{h}_{\text {Slant }}}\right)^{2}$

Open Calculator

ex $322.2559 \mathrm{~m}^{2}=\pi \cdot\left(\frac{350 \mathrm{~m}^{2}}{\pi \cdot 11 \mathrm{~m}}\right)^{2}$
20) Lateral Surface Area of Cone
$\mathrm{fx} \mathrm{LSA}=\pi \cdot \mathrm{r}_{\text {Base }} \cdot \mathrm{h}_{\text {Slant }}$
Open Calculator
ex $345.5752 \mathrm{~m}^{2}=\pi \cdot 10 \mathrm{~m} \cdot 11 \mathrm{~m}$
21) Lateral Surface Area of Cone given Base Area and Slant Height
$f \times \mathrm{LSA}=\pi \cdot \sqrt{\frac{\mathrm{A}_{\text {Base }}}{\pi}} \cdot \mathrm{h}_{\text {Slant }}$
Open Calculator
ex $346.0373 \mathrm{~m}^{2}=\pi \cdot \sqrt{\frac{315 \mathrm{~m}^{2}}{\pi}} \cdot 11 \mathrm{~m}$
22) Lateral Surface Area of Cone given Base Circumference and Slant Height
$\mathrm{fx} \mathrm{LSA}=\frac{\mathrm{C}_{\text {Base }}}{2} \cdot \mathrm{~h}_{\text {Slant }}$
$\mathrm{ex} 330 \mathrm{~m}^{2}=\frac{60 \mathrm{~m}}{2} \cdot 11 \mathrm{~m}$

23) Lateral Surface Area of Cone given Height $\sqrt{\boxed{ }}$

$$
\begin{aligned}
& f \times \mathrm{LSA}=\pi \cdot \mathrm{r}_{\text {Base }} \cdot \sqrt{\mathrm{h}^{2}+\mathrm{r}_{\text {Base }}^{2}} \\
& \text { ex } 351.2407 \mathrm{~m}^{2}=\pi \cdot(10 \mathrm{~m}) \cdot \sqrt{(5 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}} \\
& \text { 24) Lateral Surface Area of Cone given Volume } \\
& \mathrm{fx} \mathrm{LSA}=\pi \cdot \mathrm{r}_{\text {Base }} \cdot \sqrt{\left(\frac{3 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}_{\text {Base }}^{2}}\right)^{2}+\mathrm{r}_{\text {Base }}^{2}} \\
& \text { ex } 350.7592 \mathrm{~m}^{2}=\pi \cdot(10 \mathrm{~m}) \cdot \sqrt{\left(\frac{3 \cdot 520 \mathrm{~m}^{3}}{\pi \cdot(10 \mathrm{~m})^{2}}\right)^{2}+(10 \mathrm{~m})^{2}}
\end{aligned}
$$

25) Total Surface Area of Cone
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{TSA}}=\pi \cdot \mathrm{r}_{\text {Base }} \cdot\left(\mathrm{r}_{\text {Base }}+\mathrm{h}_{\text {Slant }}\right)$
ex $659.7345 \mathrm{~m}^{2}=\pi \cdot 10 \mathrm{~m} \cdot(10 \mathrm{~m}+11 \mathrm{~m})$
26) Total Surface Area of Cone given Base Area
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=\left(\pi \cdot \mathrm{r}_{\text {Base }} \cdot \mathrm{h}_{\text {Slant }}\right)+\mathrm{A}_{\text {Base }}$
Open Calculator
ex $660.5752 \mathrm{~m}^{2}=(\pi \cdot 10 \mathrm{~m} \cdot 11 \mathrm{~m})+315 \mathrm{~m}^{2}$
27) Total Surface Area of Cone given Lateral Surface Area
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=\mathrm{LSA}+\left(\pi \cdot \mathrm{r}_{\text {Base }}^{2}\right)$
Open Calculator
ex $664.1593 \mathrm{~m}^{2}=350 \mathrm{~m}^{2}+\left(\pi \cdot(10 \mathrm{~m})^{2}\right)$
28) Total Surface Area of Cone given Lateral Surface Area and Base Area
f. $\mathrm{TSA}=\mathrm{LSA}+\mathrm{A}_{\text {Base }}$

Open Calculator
ex $665 \mathrm{~m}^{2}=350 \mathrm{~m}^{2}+315 \mathrm{~m}^{2}$

Volume of Cone

29) Volume of Cone
$\mathrm{fx} \mathrm{V}=\frac{\pi \cdot \mathrm{r}_{\text {Base }}^{2} \cdot \mathrm{~h}}{3}$
Open Calculator 〔
ex $523.5988 \mathrm{~m}^{3}=\frac{\pi \cdot(10 \mathrm{~m})^{2} \cdot 5 \mathrm{~m}}{3}$
30) Volume of Cone given Base Circumference
$f \times V=\frac{\mathrm{C}_{\text {Base }}^{2} \cdot \mathrm{~h}}{12 \cdot \pi}$
ex $477.4648 \mathrm{~m}^{3}=\frac{(60 \mathrm{~m})^{2} \cdot 5 \mathrm{~m}}{12 \cdot \pi}$
31) Volume of Cone given Lateral Surface Area

ex $514.2844 \mathrm{~m}^{3}=\frac{\pi\left(\frac{m^{2}}{\pi \cdot(10 \mathrm{~m})}\right)}{3}-(10 \mathrm{~m})$
32) Volume of Cone given Slant Height and Height \longleftarrow
$f \times \mathrm{V}=\frac{\pi \cdot\left(\mathrm{h}_{\text {Slant }}^{2}-\mathrm{h}^{2}\right) \cdot \mathrm{h}}{3}$
Open Calculator 〔
$\mathrm{ex} 502.6548 \mathrm{~m}^{3}=\frac{\pi \cdot\left((11 \mathrm{~m})^{2}-(5 \mathrm{~m})^{2}\right) \cdot(5 \mathrm{~m})}{3}$
33) Volume of Cone given Total Surface Area

$$
\pi \cdot \mathrm{r}_{\text {Base }}^{2} \cdot \sqrt{\left(\frac{\mathrm{TSA}}{\pi \cdot \mathrm{r}_{\text {Base }}}-\mathrm{r}_{\text {Base }}\right)^{2}-\mathrm{r}_{\text {Base }}^{2}}
$$

$$
\text { ex } 520.6105 \mathrm{~m}^{3}=\frac{V}{3}
$$

$$
\pi \cdot(10 \mathrm{~m})^{2} \cdot \sqrt{\left(\frac{665 \mathrm{~m}^{2}}{\pi \cdot(10 \mathrm{~m})}-(10 \mathrm{~m})\right)^{2}-(10 \mathrm{~m})^{2}}
$$

$f \mathrm{f} \mathrm{V}=\frac{1}{}$

Variables Used

- ABase Base Area of Cone (Square Meter)
- CBase Base Circumference of Cone (Meter)
- h Height of Cone (Meter)
- $\mathbf{h}_{\text {Slant }}$ Slant Height of Cone (Meter)
- LSA Lateral Surface Area of Cone (Square Meter)
- $\mathbf{r B a s e}^{\text {Base Radius of Cone (Meter) }}$
- TSA Total Surface Area of Cone (Square Meter)
- V Volume of Cone (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3}) Volume Unit Conversion
- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion

Check other formula lists

- Cone Formulas \mathcal{G}
- Truncated Cone Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

