
calculatoratoz.com

unitsconverters.com

Important Formulas of Icosahedron

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 34 Important Formulas of Icosahedron

Important Formulas of Icosahedron ©

Edge Length of Icosahedron \Subset

1) Edge Length of Icosahedron given Circumsphere Radius
$f \mathbb{E} 1_{e}=\frac{4 \cdot r_{c}}{\sqrt{10+(2 \cdot \sqrt{5})}}$

$$
\boldsymbol{\epsilon x} 9.46316 \mathrm{~m}=\frac{4 \cdot 9 \mathrm{~m}}{\sqrt{10+(2 \cdot \sqrt{5})}}
$$

2) Edge Length of Icosahedron given Face Perimeter
$f \mathrm{fx} \mathrm{l}_{\mathrm{e}}=\frac{\mathrm{P}_{\text {Face }}}{3}$
Open Calculator
$\mathrm{ex} 10 \mathrm{~m}=\frac{30 \mathrm{~m}}{3}$
3) Edge Length of Icosahedron given Total Surface Area
$\mathrm{fx} \mathrm{l}_{\mathrm{e}}=\sqrt{\frac{\mathrm{TSA}}{5 \cdot \sqrt{3}}}$
ex $10.02292 \mathrm{~m}=\sqrt{\frac{870 \mathrm{~m}^{2}}{5 \cdot \sqrt{3}}}$
4) Edge Length of Icosahedron given Volume
$f \times l_{e}=\left(\frac{\frac{12}{5} \cdot V}{3+\sqrt{5}}\right)^{\frac{1}{3}}$
ex $10.02789 \mathrm{~m}=\left(\frac{\frac{12}{5} \cdot 2200 \mathrm{~m}^{3}}{3+\sqrt{5}}\right)^{\frac{1}{3}}$

Perimeter of Icosahedron

5) Face Perimeter of Icosahedron
$f \times P_{\text {Face }}=3 \cdot l_{e}$
ex $30 \mathrm{~m}=3 \cdot 10 \mathrm{~m}$
6) Face Perimeter of Icosahedron given Circumsphere Radius
$f \mathrm{fx} \mathrm{P}_{\text {Face }}=\frac{12 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{10+(2 \cdot \sqrt{5})}}$
$12 \cdot 9 \mathrm{~m}$
$\sqrt{10+(2 \cdot \sqrt{5})}$
7) Face Perimeter of Icosahedron given Volume
$f \times P_{\text {Face }}=3 \cdot\left(\frac{12 \cdot \mathrm{~V}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}$
$\operatorname{ex} 30.08367 \mathrm{~m}=3 \cdot\left(\frac{12 \cdot 2200 \mathrm{~m}^{3}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}$
8) Perimeter of Icosahedron
$f \times P=30 \cdot l_{e}$
ex $300 \mathrm{~m}=30 \cdot 10 \mathrm{~m}$
9) Perimeter of Icosahedron given Space Diagonal
$f \times P=\frac{60 \cdot \mathrm{~d}_{\text {Space }}}{\sqrt{10+(2 \cdot \sqrt{5})}}$

Open Calculator

$\mathrm{ex} 299.6667 \mathrm{~m}=\frac{60 \cdot 19 \mathrm{~m}}{\sqrt{10+(2 \cdot \sqrt{5})}}$
10) Perimeter of Icosahedron given Volume
$f \times P_{\text {Face }}=30 \cdot\left(\frac{12 \cdot \mathrm{~V}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}$
ex $300.8367 \mathrm{~m}=30 \cdot\left(\frac{12 \cdot 2200 \mathrm{~m}^{3}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}$

Radius of Icosahedron ©

11) Circumsphere Radius of Icosahedron
$f \mathrm{x} \mathrm{r}_{\mathrm{c}}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{4} \cdot l_{\mathrm{e}}$
$\mathrm{ex} 9.510565 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{4} \cdot 10 \mathrm{~m}$
12) Circumsphere Radius of Icosahedron given Volume
$\mathrm{fx} \mathrm{r}_{\mathrm{c}}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{4} \cdot\left(\frac{12 \cdot \mathrm{~V}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}$

$$
\operatorname{ex} 9.53709 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{4} \cdot\left(\frac{12 \cdot 2200 \mathrm{~m}^{3}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{1}{3}}
$$

13) Insphere Radius of Icosahedron
$f \mathbf{x} \mathrm{r}_{\mathrm{i}}=\frac{\sqrt{3} \cdot(3+\sqrt{5})}{12} \cdot l_{e}$
$\mathrm{ex} 7.557613 \mathrm{~m}=\frac{\sqrt{3} \cdot(3+\sqrt{5})}{12} \cdot 10 \mathrm{~m}$
14) Insphere Radius of Icosahedron given Total Surface Area
f. $\mathrm{r}_{\mathrm{i}}=\frac{\sqrt{3} \cdot(3+\sqrt{5})}{12} \cdot \sqrt{\frac{\mathrm{TSA}}{5 \cdot \sqrt{3}}}$
ex $7.574936 \mathrm{~m}=\frac{\sqrt{3} \cdot(3+\sqrt{5})}{12} \cdot \sqrt{\frac{870 \mathrm{~m}^{2}}{5 \cdot \sqrt{3}}}$
15) Midsphere Radius of Icosahedron
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\frac{1+\sqrt{5}}{4} \cdot l_{\mathrm{e}}$
ex $8.09017 \mathrm{~m}=\frac{1+\sqrt{5}}{4} \cdot 10 \mathrm{~m}$
16) Midsphere Radius of Icosahedron given Space Diagonal
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\frac{1+\sqrt{5}}{2} \cdot \frac{\mathrm{~d}_{\text {Space }}}{\sqrt{10+(2 \cdot \sqrt{5})}}$
ex $8.081183 \mathrm{~m}=\frac{1+\sqrt{5}}{2} \cdot \frac{19 \mathrm{~m}}{\sqrt{10+(2 \cdot \sqrt{5})}}$

Space Diagonal of Icosahedron ©

17) Space Diagonal of Icosahedron

$\mathrm{ex} 19.02113 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot 10 \mathrm{~m}$
18) Space Diagonal of Icosahedron given Lateral Surface Area
$f_{x} d_{\text {Space }}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{2 \cdot L S A}{9 \cdot \sqrt{3}}}$
$\operatorname{ex} 19.02817 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{2 \cdot 780 \mathrm{~m}^{2}}{9 \cdot \sqrt{3}}}$

19) Space Diagonal of Icosahedron given Total Surface Area

$f \times \mathrm{d}_{\text {Space }}=\frac{\sqrt{10+(2 \cdot \sqrt{ } \overline{5})}}{2} \cdot \sqrt{\frac{\mathrm{TSA}}{5 \cdot \sqrt{3}}}$
$\operatorname{ex} 19.06473 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot \sqrt{\frac{870 \mathrm{~m}^{2}}{5 \cdot \sqrt{3}}}$

20) Space Diagonal of Icosahedron given Volume

$f x d_{\text {Space }}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot\left(\frac{\frac{12}{5} \cdot V}{3+\sqrt{5}}\right)^{\frac{1}{3}}$
$\operatorname{ex} 19.07418 \mathrm{~m}=\frac{\sqrt{10+(2 \cdot \sqrt{5})}}{2} \cdot\left(\frac{\frac{12}{5} \cdot 2200 \mathrm{~m}^{3}}{3+\sqrt{5}}\right)^{\frac{1}{3}}$

Surface Area of Icosahedron

21) Face Area of Icosahedron

$f \mathrm{x} \mathrm{A}_{\text {Face }}=\frac{\sqrt{3}}{4} \cdot l_{\mathrm{e}}^{2}$

[^0]22) Face Area of Icosahedron given Circumsphere Radius
$f \mathrm{fx} \mathrm{A}_{\text {Face }}=\frac{\sqrt{3}}{4} \cdot\left(\frac{4 \cdot r_{c}}{\sqrt{10+(2 \cdot \sqrt{5})}}\right)^{2}$
$\operatorname{ex~} 38.77689 \mathrm{~m}^{2}=\frac{\sqrt{3}}{4} \cdot\left(\frac{4 \cdot 9 \mathrm{~m}}{\sqrt{10+(2 \cdot \sqrt{5})}}\right)^{2}$
23) Face Area of Icosahedron given Total Surface Area
$f \times \mathrm{A}_{\text {Face }}=\frac{\mathrm{TSA}}{20}$
ex $43.5 \mathrm{~m}^{2}=\frac{870 \mathrm{~m}^{2}}{20}$
24) Lateral Surface Area of Icosahedron
$\mathrm{fx} \mathrm{LSA}=9 \cdot \frac{\sqrt{3}}{2} \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $779.4229 \mathrm{~m}^{2}=9 \cdot \frac{\sqrt{3}}{2} \cdot(10 \mathrm{~m})^{2}$
25) Lateral Surface Area of Icosahedron given Total Surface Area
f. $\mathrm{LSA}=\frac{9}{10} \cdot \mathrm{TSA}$

Open Calculator
ex $783 \mathrm{~m}^{2}=\frac{9}{10} \cdot 870 \mathrm{~m}^{2}$
26) Lateral Surface Area of Icosahedron given Volume
$f \times \mathrm{LSA}=9 \cdot \frac{\sqrt{3}}{2} \cdot\left(\frac{\frac{12}{5} \cdot \mathrm{~V}}{3+\sqrt{5}}\right)^{\frac{2}{3}}$
ex $783.7765 \mathrm{~m}^{2}=9 \cdot \frac{\sqrt{3}}{2} \cdot\left(\frac{\frac{12}{5} \cdot 2200 \mathrm{~m}^{3}}{3+\sqrt{5}}\right)^{\frac{2}{3}}$
27) Total Surface Area of Icosahedron
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=5 \cdot \sqrt{3} \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $866.0254 \mathrm{~m}^{2}=5 \cdot \sqrt{3} \cdot(10 \mathrm{~m})^{2}$
28) Total Surface Area of Icosahedron given Circumsphere Radius
$\mathbf{f x} \mathrm{TSA}=5 \cdot \sqrt{3} \cdot\left(\frac{4 \cdot \mathrm{r}_{\mathrm{c}}}{\sqrt{10+(2 \cdot \sqrt{5})}}\right)^{2}$

Open Calculator

$$
\operatorname{ex} 775.5379 \mathrm{~m}^{2}=5 \cdot \sqrt{3} \cdot\left(\frac{4 \cdot 9 \mathrm{~m}}{\sqrt{10+(2 \cdot \sqrt{5})}}\right)^{2}
$$

29) Total Surface Area of Icosahedron given Lateral Surface Area and Edge Length
$f \mathrm{x} \mathrm{TSA}=\mathrm{LSA}+\frac{\sqrt{3}}{2} \cdot \mathrm{l}_{\mathrm{e}}^{2}$
ex $866.6025 \mathrm{~m}^{2}=780 \mathrm{~m}^{2}+\frac{\sqrt{3}}{2} \cdot(10 \mathrm{~m})^{2}$
30) Total Surface Area of Icosahedron given Volume $\boxed{\boxed{ }}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=5 \cdot \sqrt{3} \cdot\left(\frac{12 \cdot \mathrm{~V}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{2}{3}}$
ex $870.8628 \mathrm{~m}^{2}=5 \cdot \sqrt{3} \cdot\left(\frac{12 \cdot 2200 \mathrm{~m}^{3}}{5 \cdot(3+\sqrt{5})}\right)^{\frac{2}{3}}$

Volume of Icosahedron

31) Volume of Icosahedron

$\mathrm{f} \mathrm{V}=\frac{5}{12} \cdot(3+\sqrt{5}) \cdot l_{\mathrm{e}}^{3}$
ex $2181.695 \mathrm{~m}^{3}=\frac{5}{12} \cdot(3+\sqrt{5}) \cdot(10 \mathrm{~m})^{3}$
32) Volume of Icosahedron given Circumsphere Radius

33) Volume of Icosahedron given Insphere Radius
$\mathrm{fx} \mathrm{V}=\frac{5}{12} \cdot(3+\sqrt{5}) \cdot\left(\frac{12 \cdot \mathrm{r}_{\mathrm{i}}}{\sqrt{3} \cdot(3+\sqrt{5})}\right)^{3}$
ex $1733.541 \mathrm{~m}^{3}=\frac{5}{12} \cdot(3+\sqrt{5}) \cdot\left(\frac{12 \cdot 7 \mathrm{~m}}{\sqrt{3} \cdot(3+\sqrt{5})}\right)^{3}$
34) Volume of Icosahedron given Total Surface Area
$f \mathrm{x} V=\frac{3+\sqrt{5}}{12 \cdot \sqrt{5}} \cdot\left(\frac{\mathrm{TSA}}{\sqrt{3}}\right)^{\frac{3}{2}}$
$\operatorname{ex} 2196.731 \mathrm{~m}^{3}=\frac{3+\sqrt{5}}{12 \cdot \sqrt{5}} \cdot\left(\frac{870 \mathrm{~m}^{2}}{\sqrt{3}}\right)^{\frac{3}{2}}$

Variables Used

- Aface Face Area of Icosahedron (Square Meter)
- $\mathbf{d}_{\text {Space }}$ Space Diagonal of Icosahedron (Meter)
- I_{e} Edge Length of Icosahedron (Meter)
- LSA Lateral Surface Area of Icosahedron (Square Meter)
- P Perimeter of Icosahedron (Meter)
- Prace Face Perimeter of Icosahedron (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumsphere Radius of Icosahedron (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Insphere Radius of Icosahedron (Meter)
- $\mathbf{r}_{\mathbf{m}}$ Midsphere Radius of Icosahedron (Meter)
- TSA Total Surface Area of Icosahedron (Square Meter)
- V Volume of Icosahedron (Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Cube Formulas \longleftarrow
- Dodecahedron Formulas
- Icosahedron Formulas
- Octahedron Formulas
- Tetrahedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

[^0]: $43.30127 \mathrm{~m}^{2}=\frac{\sqrt{3}}{4} \cdot(10 \mathrm{~m})^{2}$

