
calculatoratoz.com

unitsconverters.com

Important Formulas of Octahedron

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 25 Important Formulas of Octahedron

Important Formulas of Octahedron ©

Edge Length of Octahedron

1) Edge Length of Octahedron given Insphere Radius \qquad
$\mathrm{fx}_{\mathrm{x}} \mathrm{l}_{\mathrm{e}}=\sqrt{6} \cdot \mathrm{r}_{\mathrm{i}}$
Open Calculator
ex $9.797959 \mathrm{~m}=\sqrt{6} \cdot 4 \mathrm{~m}$
2) Edge Length of Octahedron given Midsphere Radius
$f \mathrm{f} \mathrm{l}_{\mathrm{e}}=2 \cdot \mathrm{r}_{\mathrm{m}}$
ex $10 \mathrm{~m}=2 \cdot 5 \mathrm{~m}$
3) Edge Length of Octahedron given Space Diagonal
$\mathrm{fx} \mathrm{l}_{\mathrm{e}}=\frac{\mathrm{d}_{\text {Space }}}{\sqrt{2}}$
Open Calculator ©
ex $9.899495 \mathrm{~m}=\frac{14 \mathrm{~m}}{\sqrt{2}}$
4) Edge Length of Octahedron given Volume
$\mathrm{fx}_{\mathrm{x}} \mathrm{l}_{\mathrm{e}}=\left(\frac{3 \cdot \mathrm{~V}}{\sqrt{2}}\right)^{\frac{1}{3}}$
$\mathrm{ex} 9.990059 \mathrm{~m}=\left(\frac{3 \cdot 470 \mathrm{~m}^{3}}{\sqrt{2}}\right)^{\frac{1}{3}}$

Radius of Octahedron

5) Circumsphere Radius of Octahedron $\sqrt{ }$
$f \mathrm{fx} \mathrm{r}_{\mathrm{c}}=\frac{\mathrm{l}_{\mathrm{e}}}{\sqrt{2}}$
Open Calculator 〔
ex $7.071068 \mathrm{~m}=\frac{10 \mathrm{~m}}{\sqrt{2}}$
6) Circumsphere Radius of Octahedron given Insphere Radius
$f \mathrm{x} \mathrm{r}_{\mathrm{c}}=\sqrt{3} \cdot \mathrm{r}_{\mathrm{i}}$
Open Calculator
ex $6.928203 \mathrm{~m}=\sqrt{3} \cdot 4 \mathrm{~m}$
7) Circumsphere Radius of Octahedron given Space Diagonal
$\mathrm{f} \times \mathrm{r}_{\mathrm{c}}=\frac{\mathrm{d}_{\text {Space }}}{2}$
Open Calculator
ex $7 \mathrm{~m}=\frac{14 \mathrm{~m}}{2}$
8) Insphere Radius of Octahedron
fx $r_{i}=\frac{l_{e}}{\sqrt{6}}$
Open Calculator
ex $4.082483 \mathrm{~m}=\frac{10 \mathrm{~m}}{\sqrt{6}}$
9) Insphere Radius of Octahedron given Midsphere Radius
$\mathrm{fx} \mathrm{r}_{\mathrm{i}}=\sqrt{\frac{2}{3}} \cdot \mathrm{r}_{\mathrm{m}}$
ex $4.082483 \mathrm{~m}=\sqrt{\frac{2}{3}} \cdot 5 \mathrm{~m}$
10) Insphere Radius of Octahedron given Total Surface Area

ex $4.103582 \mathrm{~m}=\frac{\sqrt{\frac{350 \mathrm{~m}^{2}}{2 \cdot \sqrt{3}}}}{\sqrt{6}}$
11) Midsphere Radius of Octahedron
$f_{\mathrm{x}} \mathrm{r}_{\mathrm{m}}=\frac{\mathrm{l}_{\mathrm{e}}}{2}$
Open Calculator ©
$\mathrm{ex} 5 \mathrm{~m}=\frac{10 \mathrm{~m}}{2}$
12) Midsphere Radius of Octahedron given Insphere Radius

$\mathrm{fx}_{\mathrm{x}} \mathrm{r}_{\mathrm{m}}=\sqrt{\frac{3}{2}} \cdot \mathrm{r}_{\mathrm{i}}$
ex $4.898979 \mathrm{~m}=\sqrt{\frac{3}{2}} \cdot 4 \mathrm{~m}$
13) Midsphere Radius of Octahedron given Space Diagonal
$\mathrm{fx} \mathrm{r}_{\mathrm{m}}=\frac{\mathrm{d}_{\text {Space }}}{2 \cdot \sqrt{2}}$
ex $4.949747 \mathrm{~m}=\frac{14 \mathrm{~m}}{2 \cdot \sqrt{2}}$

Space Diagonal of Octahedron ©

14) Space Diagonal of Octahedron
$f \times d_{\text {Space }}=\sqrt{2} \cdot l_{e}$
Open Calculator
ex $14.14214 \mathrm{~m}=\sqrt{2} \cdot 10 \mathrm{~m}$
15) Space Diagonal of Octahedron given Insphere Radius
$f \mathbf{f} \mathrm{~d}_{\text {Space }}=2 \cdot \sqrt{3} \cdot \mathrm{r}_{\mathrm{i}}$
Open Calculator
ex $13.85641 \mathrm{~m}=2 \cdot \sqrt{3} \cdot 4 \mathrm{~m}$
16) Space Diagonal of Octahedron given Midsphere Radius
$f \mathrm{f} \mathrm{d}_{\text {Space }}=2 \cdot \sqrt{2} \cdot \mathrm{r}_{\mathrm{m}}$
Open Calculator
ex $14.14214 \mathrm{~m}=2 \cdot \sqrt{2} \cdot 5 \mathrm{~m}$
17) Space Diagonal of Octahedron given Volume
$\mathrm{fx} \mathrm{d}_{\text {Space }}=\sqrt{2} \cdot\left(\frac{3 \cdot \mathrm{~V}}{\sqrt{2}}\right)^{\frac{1}{3}}$

Open Calculator

$\operatorname{ex} 14.12808 \mathrm{~m}=\sqrt{2} \cdot\left(\frac{3 \cdot 470 \mathrm{~m}^{3}}{\sqrt{2}}\right)^{\frac{1}{3}}$

Total Surface Area of Octahedron

18) Total Surface Area of Octahedron
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=2 \cdot \sqrt{3} \cdot \mathrm{l}_{\mathrm{e}}^{2}$
Open Calculator
ex $346.4102 \mathrm{~m}^{2}=2 \cdot \sqrt{3} \cdot(10 \mathrm{~m})^{2}$
19) Total Surface Area of Octahedron given Circumsphere Radius

Open Calculator
$\mathrm{fx} \mathrm{TSA}=4 \cdot \sqrt{3} \cdot \mathrm{r}_{\mathrm{c}}^{2}$
ex $339.482 \mathrm{~m}^{2}=4 \cdot \sqrt{3} \cdot(7 \mathrm{~m})^{2}$
20) Total Surface Area of Octahedron given Midsphere Radius
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=8 \cdot \sqrt{3} \cdot \mathrm{r}_{\mathrm{m}}^{2}$
ex $346.4102 \mathrm{~m}^{2}=8 \cdot \sqrt{3} \cdot(5 \mathrm{~m})^{2}$
21) Total Surface Area of Octahedron given Space Diagonal
$\mathrm{fx} \mathrm{TSA}=\sqrt{3} \cdot \mathrm{~d}_{\text {Space }}^{2}$
ex $339.482 \mathrm{~m}^{2}=\sqrt{3} \cdot(14 \mathrm{~m})^{2}$

Volume of Octahedron ©

22) Volume of Octahedron
$\mathrm{fx} \mathrm{V}=\frac{\sqrt{2}}{3} \cdot 1_{\mathrm{e}}^{3}$
Open Calculator
ex $471.4045 \mathrm{~m}^{3}=\frac{\sqrt{2}}{3} \cdot(10 \mathrm{~m})^{3}$
23) Volume of Octahedron given Circumsphere Radius
$f \mathrm{fx}=\frac{4 \cdot \mathrm{r}_{\mathrm{c}}^{3}}{3}$
Open Calculator
ex $457.3333 \mathrm{~m}^{3}=\frac{4 \cdot(7 \mathrm{~m})^{3}}{3}$
24) Volume of Octahedron given Insphere Radius
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}=4 \cdot \sqrt{3} \cdot \mathrm{r}_{\mathrm{i}}^{3}$
Open Calculator
ex $443.405 \mathrm{~m}^{3}=4 \cdot \sqrt{3} \cdot(4 \mathrm{~m})^{3}$
25) Volume of Octahedron given Total Surface Area
$f_{\mathrm{x}} \mathrm{V}=\frac{\sqrt{2}}{3} \cdot\left(\sqrt{\frac{\mathrm{TSA}}{2 \cdot \sqrt{3}}}\right)^{3}$
ex $478.7512 \mathrm{~m}^{3}=\frac{\sqrt{2}}{3} \cdot\left(\sqrt{\frac{350 \mathrm{~m}^{2}}{2 \cdot \sqrt{3}}}\right)^{3}$

Variables Used

- $\mathbf{d}_{\text {Space }}$ Space Diagonal of Octahedron (Meter)
- I_{e} Edge Length of Octahedron (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumsphere Radius of Octahedron (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Insphere Radius of Octahedron (Meter)
- $\mathbf{r}_{\mathbf{m}}$ Midsphere Radius of Octahedron (Meter)
- TSA Total Surface Area of Octahedron (Square Meter)
- V Volume of Octahedron (Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Cube Formulas \mathcal{G}
- Dodecahedron Formulas
- Icosahedron Formulas
- Octahedron Formulas
- Tetrahedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

