
calculatoratoz.com

Design of Anchor Bolt \& Bolting Chair Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Design of Anchor Bolt \& Bolting Chair Formulas

Design of Anchor Bolt \& Bolting Chair ©

1) Cross Sectional Area of Bolt
$f \mathrm{fx} \mathrm{A}_{\text {bolt }}=\frac{\mathrm{P}_{\text {bolt }}}{\mathrm{f}_{\text {bolt }}}$
Open Calculator
ex $20.43416 \mathrm{~mm}^{2}=\frac{2151.921 \mathrm{~N}}{105.31 \mathrm{~N} / \mathrm{mm}^{2}}$
2) Diameter of Anchor Bolt Circle
$f \mathrm{f} \mathrm{D}_{\mathrm{bc}}=\frac{\left(4 \cdot\left(\mathrm{Wind}_{\text {Force }}\right)\right) \cdot(\text { Height }-\mathrm{c})}{\mathrm{N} \cdot \mathrm{P}_{\text {Load }}}$
ex $741.3926 \mathrm{~mm}=\frac{(4 \cdot(3841.6 \mathrm{~N})) \cdot(4000 \mathrm{~mm}-1250 \mathrm{~mm})}{2 \cdot 28498.8 \mathrm{~N}}$
3) Diameter of Bolt given Cross Sectional Area
$f \mathrm{x} \mathrm{d}_{\mathrm{b}}=\left(\mathrm{A}_{\mathrm{bolt}} \cdot\left(\frac{4}{\pi}\right)\right)^{0.5}$
$\mathbf{e x} 5.100743 \mathrm{~mm}=\left(20.43416 \mathrm{~mm}^{2} \cdot\left(\frac{4}{\pi}\right)\right)^{0.5}$
4) Height of Lower Part of Vessel
$f \mathrm{x} \mathrm{h}_{1}=\frac{\mathrm{P}_{\mathrm{lw}}}{\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{p}_{1} \cdot \mathrm{D}_{\mathrm{o}}}$
ex $2.022947 \mathrm{~m}=\frac{67 \mathrm{~N}}{0.69 \cdot 4 \cdot 20 \mathrm{~N} / \mathrm{m}^{2} \cdot 0.6 \mathrm{~m}}$
5) Height of Upper Part of Vessel
$f \mathrm{fx} \mathrm{h}_{2}=\frac{\mathrm{P}_{\text {uw }}}{\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{p}_{2} \cdot \mathrm{D}_{\mathrm{o}}}$
ex $1.796498 \mathrm{~m}=\frac{119 \mathrm{~N}}{0.69 \cdot 4 \cdot 40 \mathrm{~N} / \mathrm{m}^{2} \cdot 0.6 \mathrm{~m}}$
6) Load on Each Bolt $\sqrt{\boxed{J}}$
$f \mathrm{fx} \mathrm{P}_{\text {bolt }}=\mathrm{f}_{\mathrm{c}} \cdot\left(\frac{\mathrm{A}}{\mathrm{n}}\right)$
ex $2151.921 \mathrm{~N}=2.213 \mathrm{~N} / \mathrm{mm}^{2} \cdot\left(\frac{102101.98 \mathrm{~mm}^{2}}{105}\right)$
7) Maximum Compressive Load
$f x P_{\text {Load }}=f_{\text {horizontal }} \cdot\left(L_{\text {Horizontal }} \cdot \mathrm{a}\right)$
ex $28498.8 \mathrm{~N}=2.2 \mathrm{~N} / \mathrm{mm}^{2} \cdot(127 \mathrm{~mm} \cdot 102 \mathrm{~mm})$
8) Maximum Seismic Moment
$f \mathrm{f} \mathrm{M}_{\mathrm{s}}=\left(\left(\frac{2}{3}\right) \cdot \mathrm{C} \cdot \Sigma \mathrm{W} \cdot \mathrm{H}\right)$
ex $4.7 \mathrm{E}^{\wedge} 7 \mathrm{~N}^{*} \mathrm{~mm}=\left(\left(\frac{2}{3}\right) \cdot 0.093 \cdot 50000 \mathrm{~N} \cdot 15 \mathrm{~m}\right)$
9) Maximum Stress in Horizontal Plate fixed at Edges

$\boxed{3}$

fx
Open Calculator E
$\mathrm{f}_{\text {Edges }}=0.7 \cdot \mathrm{f}_{\text {horizontal }} \cdot\left(\frac{\left(\mathrm{L}_{\text {Horizontal }}\right)^{2}}{\left(\mathrm{~T}_{\mathrm{h}}\right)^{2}}\right) \cdot\left(\frac{(\mathrm{a})^{4}}{\left(\left(\mathrm{~L}_{\text {Horizontal }}\right)^{4}+(\mathrm{a})\right)^{4}}\right)$

ex

$531.723 \mathrm{~N} / \mathrm{mm}^{2}=0.7 \cdot 2.2 \mathrm{~N} / \mathrm{mm}^{2} \cdot\left(\frac{(127 \mathrm{~mm})^{2}}{(6.8 \mathrm{~mm})^{2}}\right) \cdot\left(\frac{(102 \mathrm{~mm})^{4}}{\left((127 \mathrm{~mm})^{4}+(102 \mathrm{~mm})\right)^{4}}\right)$
10) Mean Diameter of Skirt in Vessel
$f \mathrm{fx} \mathrm{D}_{\mathrm{sk}}=\left(\frac{4 \cdot \mathrm{M}_{\mathrm{w}}}{\left(\pi \cdot\left(\mathrm{f}_{\mathrm{wb}}\right) \cdot \mathrm{t}_{\mathrm{sk}}\right)}\right)^{0.5}$
ex $19893.55 \mathrm{~mm}=\left(\frac{4 \cdot 370440000 \mathrm{~N}^{*} \mathrm{~mm}}{\left(\pi \cdot\left(1.01 \mathrm{~N} / \mathrm{mm}^{2}\right) \cdot 1.18 \mathrm{~mm}\right)}\right)^{0.5}$
11) Number of Bolts
$\mathrm{fx} \mathrm{n}=\frac{\pi \cdot \mathrm{D}_{\mathrm{sk}}}{600}$
ex $104.1624=\frac{\pi \cdot 19893.55 \mathrm{~mm}}{600}$
12) Stress due to Internal Pressure
$f \mathrm{f} \mathrm{f}_{\mathrm{cs} 1}=\frac{\mathrm{p} \cdot \mathrm{D}}{2 \cdot \mathrm{t}}$
ex $140000 \mathrm{~N} / \mathrm{mm}^{2}=\frac{0.7 \mathrm{~N} / \mathrm{mm}^{2} \cdot 80000000 \mathrm{~mm}}{2 \cdot 200 \mathrm{~mm}}$
13) Wind Pressure acting on Lower Part of Vessel
$\mathrm{fx} \mathrm{p}_{1}=\frac{\mathrm{P}_{\mathrm{lw}}}{\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{h}_{1} \cdot \mathrm{D}_{\mathrm{o}}}$
ex $19.26616 \mathrm{~N} / \mathrm{m}^{2}=\frac{67 \mathrm{~N}}{0.69 \cdot 4 \cdot 2.1 \mathrm{~m} \cdot 0.6 \mathrm{~m}}$
14) Wind Pressure acting on Upper Part of Vessel
$\mathrm{fx} \mathrm{p}_{2}=\frac{\mathrm{P}_{\text {uw }}}{\mathrm{k}_{1} \cdot \mathrm{k}_{\text {coefficient }} \cdot \mathrm{h}_{2} \cdot \mathrm{D}_{\mathrm{o}}}$
ex $39.7016 \mathrm{~N} / \mathrm{m}^{2}=\frac{119 \mathrm{~N}}{0.69 \cdot 4 \cdot 1.81 \mathrm{~m} \cdot 0.6 \mathrm{~m}}$

Variables Used

- a Effective Width of Horizontal Plate (Millimeter)
- A Area of Contact in Bearing Plate and Foundation (Square Millimeter)
- Abolt Cross Sectional Area of Bolt (Square Millimeter)
- C Clearance between Vessel Bottom and Foundation (Millimeter)
- C Seismic Coefficient
- D Vessel Diameter (Millimeter)
- $\mathbf{d}_{\mathbf{b}}$ Diameter of Bolt (Millimeter)
- \mathbf{D}_{bc} Diameter of Anchor Bolt Circle (Millimeter)
- $\mathbf{D}_{\mathbf{o}}$ Outside Diameter of Vessel (Meter)
- $\mathbf{D}_{\mathbf{s k}}$ Mean Diameter of Skirt (Millimeter)
- $\mathbf{f}_{\text {bolt }}$ Permissible Stress for Bolt Materials (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{c}}$ Stress in Bearing Plate and Concrete Foundation (Newton per Square Millimeter)
- $\mathbf{f}_{\mathbf{c s} 1}$ Stress due to Internal Pressure (Newton per Square Millimeter)
- $\mathbf{f}_{\text {Edges }}$ Maximum Stress in Horizontal Plate fixed at Edges (Newton per Square Millimeter)
- $\mathbf{f}_{\text {horizontal }}$ Maximum Pressure on Horizontal Plate (Newton per Square Millimeter)
- $\mathbf{f}_{\text {wb }}$ Axial Bending Stress at Base of Vessel (Newton per Square Millimeter)
- H Total Height of Vessel (Meter)
- $\mathbf{h}_{\mathbf{1}}$ Height of Lower Part of Vessel (Meter)
- $\mathbf{h}_{\mathbf{2}}$ Height of Upper Part of Vessel (Meter)
- Height Height of Vessel above Foundation (Millimeter)
- $\mathbf{k}_{\mathbf{1}}$ Coefficient depending on Shape Factor
- $\mathbf{k}_{\text {coefficient }}$ Coefficient Period of One Cycle of Vibration
- L ${ }_{\text {Horizontal }}$ Length of Horizontal Plate (Millimeter)
- $\mathbf{M}_{\mathbf{s}}$ Maximum Seismic Moment (Newton Millimeter)
- $\mathbf{M}_{\mathbf{w}}$ Maximum Wind Moment (Newton Millimeter)
- \mathbf{n} Number of Bolts
- N Number of Brackets
- p Internal Design Pressure (Newton per Square Millimeter)
- \mathbf{p}_{1} Wind Pressure acting on Lower Part of Vessel (Newton per Square Meter)
- $\mathbf{p}_{\mathbf{2}}$ Wind Pressure acting on Upper Part of Vessel (Newton per Square Meter)
- $\mathbf{P}_{\text {bolt }}$ Load on Each Bolt (Newton)
- $P_{\text {Load }}$ Maximum Compressive Load on Remote Bracket (Newton)
- $\mathbf{P}_{\mathbf{I w}}$ Wind Load acting on Lower Part of Vessel (Newton)
- $\mathbf{P}_{\mathbf{u w}}$ Wind Load acting on Upper Part of Vessel (Newton)
- t Shell Thickness (Millimeter)
- $\mathbf{T}_{\mathbf{h}}$ Thickness of Horizontal Plate (Millimeter)
- $\mathbf{t}_{\mathbf{s k}}$ Thickness of Skirt (Millimeter)
- Wind ${ }_{\text {Force }}$ Total Wind Force acting on Vessel (Newton)
- $\mathbf{\Sigma W}$ Total Weight of Vessel (Newton)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$), Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Pressure Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Moment of Force in Newton Millimeter ($\mathrm{N}^{*} \mathrm{~mm}$)

Moment of Force Unit Conversion

- Measurement: Bending Moment in Newton Millimeter ($\mathrm{N}^{*} \mathrm{~mm}$) Bending Moment Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Anchor Bolt \& Bolting Chair • Lug or Bracket Support Formulas Formulas •Saddle Support Formulas
- Design Thickness of Skirt Formulas • Skirt Supports Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

