

Important Formulas of Cylinder

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 29 Important Formulas of Cylinder

Important Formulas of Cylinder

Diagonal of Cylinder

1) Diagonal of Cylinder

$$\mathrm{d} = \sqrt{\mathrm{h}^2 + \left(2\cdot\mathrm{r}
ight)^2}$$

Open Calculator

$$extbf{ex} \left[15.6205 ext{m}^2 = \sqrt{\left(12 ext{m}
ight)^2 + \left(2 \cdot 5 ext{m}
ight)^2}
ight]$$

2) Diagonal of Cylinder given Lateral Surface Area and Height

$$\mathrm{d} = \sqrt{\mathrm{h}^2 + \left(rac{\mathrm{LSA}}{\pi \cdot \mathrm{h}}
ight)^2}$$

Open Calculator 🗗

$$ext{ex} 15.67171 ext{m}^2 = \sqrt{\left(12 ext{m}
ight)^2 + \left(rac{380 ext{m}^2}{\pi \cdot (12 ext{m})}
ight)^2}$$

3) Diagonal of Cylinder given Total Surface Area and Radius

$$\mathrm{d} = \sqrt{\left(rac{\mathrm{TSA}}{2\cdot\pi\cdot\mathrm{r}} - \mathrm{r}
ight)^2 + (2\cdot\mathrm{r})^2}$$

Open Calculator

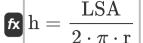
$$extbf{ex} 15.52118 ext{m}^2 = \sqrt{\left(rac{530 ext{m}^2}{2 \cdot \pi \cdot 5 ext{m}} - 5 ext{m}
ight)^2 + \left(2 \cdot 5 ext{m}
ight)^2}$$

4) Diagonal of Cylinder given Volume and Height

$$\mathrm{d} = \sqrt{\mathrm{h}^2 + rac{4\cdot\mathrm{V}}{\pi\cdot\mathrm{h}}}$$

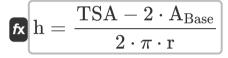
$$extbf{ex} 15.61208 ext{m}^2 = \sqrt{\left(12 ext{m}
ight)^2 + rac{4 \cdot 940 ext{m}^3}{\pi \cdot (12 ext{m})}}$$

Height of Cylinder 🗗


5) Height of Cylinder given Diagonal

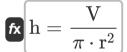
$$h=\sqrt{\mathrm{d}^2-\left(2\cdot\mathrm{r}
ight)^2}$$

$$ext{ex} 12.49 ext{m} = \sqrt{\left(16 ext{m}^2
ight)^2 - \left(2 \cdot 5 ext{m}
ight)^2}$$


6) Height of Cylinder given Lateral Surface Area

Open Calculator

ex $12.09578 \mathrm{m} = rac{380 \mathrm{m}^2}{2 \cdot \pi \cdot 5 \mathrm{m}}$

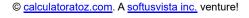

7) Height of Cylinder given Total Surface Area and Base Area

Open Calculator

ex $11.77747 \mathrm{m} = rac{530 \mathrm{m}^2 - 2 \cdot 80 \mathrm{m}^2}{2 \cdot \pi \cdot 5 \mathrm{m}}$

8) Height of Cylinder given Volume

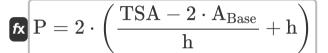
Open Calculator


ex $11.96845 \text{m} = \frac{940 \text{m}^3}{\pi \cdot (5 \text{m})^2}$

Perimeter of Cylinder 2

fx
$$P=2\cdot(2\cdot\pi\cdot\mathrm{r}+\mathrm{h})$$

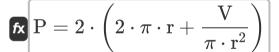
ex $86.83185 \mathrm{m} = 2 \cdot (2 \cdot \pi \cdot 5 \mathrm{m} + 12 \mathrm{m})$


10) Perimeter of Cylinder given Lateral Surface Area and Height

 $ext{P} = 2 \cdot \left(rac{ ext{LSA}}{ ext{h}} + ext{h}
ight)$

Open Calculator 🚰

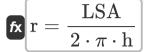
 $ext{ex} 87.33333 ext{m} = 2 \cdot \left(rac{380 ext{m}^2}{12 ext{m}} + 12 ext{m}
ight)$


11) Perimeter of Cylinder given Total Surface Area and Height

Open Calculator 🗗

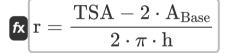
 $oxed{85.66667 ext{m} = 2 \cdot \left(rac{530 ext{m}^2 - 2 \cdot 80 ext{m}^2}{12 ext{m}} + 12 ext{m}
ight)}$

12) Perimeter of Cylinder given Volume and Radius


Open Calculator

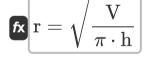
 $oxed{ex} 86.76876 \mathrm{m} = 2 \cdot \left(2 \cdot \pi \cdot (5 \mathrm{m}) + rac{940 \mathrm{m}^3}{\pi \cdot (5 \mathrm{m})^2}
ight)$

Radius of Cylinder 2


13) Radius of Cylinder given Lateral Surface Area

Open Calculator

$$\mathbf{ex} = 5.039907 \mathrm{m} = rac{380 \mathrm{m}^2}{2 \cdot \pi \cdot 12 \mathrm{m}}$$


14) Radius of Cylinder given Total Surface Area and Base Area

Open Calculator

ex
$$4.907277 \mathrm{m} = rac{530 \mathrm{m}^2 - 2 \cdot 80 \mathrm{m}^2}{2 \cdot \pi \cdot 12 \mathrm{m}}$$

15) Radius of Cylinder given Volume

Open Calculator

ex
$$4.993423 \mathrm{m} = \sqrt{rac{940 \mathrm{m}^3}{\pi \cdot 12 \mathrm{m}}}$$

Surface Area of Cylinder

16) Base Area of Cylinder

fx $m A_{Base} = \pi \cdot r^2$

Open Calculator

ex $78.53982 ext{m}^2 = \pi \cdot (5 ext{m})^2$

17) Lateral Surface Area of Cylinder

fx $LSA = 2 \cdot \pi \cdot r \cdot h$

Open Calculator

ex $376.9911 ext{m}^2=2\cdot\pi\cdot5 ext{m}\cdot12 ext{m}$

18) Lateral Surface Area of Cylinder given Diagonal and Radius

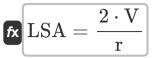
 $ext{LSA} = 2 \cdot \pi \cdot ext{r} \cdot \sqrt{ ext{d}^2 - \left(2 \cdot ext{r}
ight)^2}$

extstyle ext

Open Calculator 🗗

19) Lateral Surface Area of Cylinder given Total Surface Area and Base Area

 $ag{LSA} = ext{TSA} - (2 \cdot ext{A}_{ ext{Base}})$


Open Calculator

 $ext{ex} \ 370 ext{m}^2 = 530 ext{m}^2 - (2 \cdot 80 ext{m}^2)$

 \mathbb{Z}_{Λ}

20) Lateral Surface Area of Cylinder given Volume and Radius

Open Calculator

= $376 \mathrm{m}^2 = rac{2 \cdot 940 \mathrm{m}^3}{5 \mathrm{m}}$

21) Total Surface Area of Cylinder

 $ag{TSA} = 2 \cdot \pi \cdot ext{r} \cdot (ext{h} + ext{r})$

Open Calculator

 $\mathbf{ex} \left[534.0708 \mathrm{m}^2 = 2 \cdot \pi \cdot 5 \mathrm{m} \cdot (12 \mathrm{m} + 5 \mathrm{m}) \right]$

22) Total Surface Area of Cylinder given Diagonal and Height

 $ext{TSA} = \pi \cdot \sqrt{ ext{d}^2 - ext{h}^2} \cdot \left(ext{h} + rac{\sqrt{ ext{d}^2 - ext{h}^2}}{2}
ight)$

Open Calculator 🚰

ex

$$574.8991 ext{m}^2 = \pi \cdot \sqrt{\left(16 ext{m}^2
ight)^2 - \left(12 ext{m}
ight)^2} \cdot \left(\left(12 ext{m}
ight) + rac{\sqrt{\left(16 ext{m}^2
ight)^2 - \left(12 ext{m}
ight)^2}}{2}
ight)$$

23) Total Surface Area of Cylinder given Lateral Surface Area and Base Area

 $ag{TSA} = ext{LSA} + (2 \cdot ext{A}_{ ext{Base}})$

Open Calculator

 $ext{ex} [540 ext{m}^2 = 380 ext{m}^2 + (2 \cdot 80 ext{m}^2)]$

24) Total Surface Area of Cylinder given Volume and Radius

 $ag{TSA} = 2 \cdot \pi \cdot ext{r} \cdot \left(rac{ ext{V}}{\pi \cdot ext{r}^2} + ext{r}
ight)$

Open Calculator

 $oxed{ex} 533.0796 \mathrm{m}^2 = 2 \cdot \pi \cdot (5\mathrm{m}) \cdot \left(rac{940 \mathrm{m}^3}{\pi \cdot (5\mathrm{m})^2} + (5\mathrm{m})
ight)$

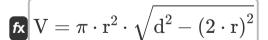
Volume of Cylinder

25) Volume of Cylinder

fx $V = \pi \cdot r^2 \cdot h$

Open Calculator

26) Volume of Cylinder given Base Area


 $942.4778 ext{m}^{_3} = \pi \cdot (5 ext{m})^2 \cdot 12 ext{m}$

Open Calculator

 $960 \text{m}^3 = 80 \text{m}^2 \cdot 12 \text{m}^3$

fx $V = A_{Base} \cdot h$

27) Volume of Cylinder given Diagonal and Radius

Open Calculator

 $ext{ex} 980.962 ext{m}^{_3} = \pi \cdot (5 ext{m})^2 \cdot \sqrt{\left(16 ext{m}^2
ight)^2 - \left(2 \cdot (5 ext{m})
ight)^2}$

28) Volume of Cylinder given Lateral Surface Area and Height

Open Calculator

$$extbf{V} = rac{ ext{LSA}^2}{4 \cdot \pi \cdot ext{h}}$$

$$= \frac{(380 \text{m}^2)^2}{4 \cdot \pi \cdot 12 \text{m}}$$

29) Volume of Cylinder given Total Surface Area and Height G

Open Calculator

$$ext{V} = rac{\left(ext{TSA} - 2 \cdot ext{A}_{ ext{Base}}
ight)^2}{4 \cdot \pi \cdot ext{h}}$$

$$oxed{egin{align*} egin{align*} egin{al$$

Variables Used

- ABase Base Area of Cylinder (Square Meter)
- **d** Diagonal of Cylinder (Square Meter)
- **h** Height of Cylinder (*Meter*)
- LSA Lateral Surface Area of Cylinder (Square Meter)
- P Perimeter of Cylinder (Meter)
- r Radius of Cylinder (Meter)
- **TSA** Total Surface Area of Cylinder (Square Meter)
- **V** Volume of Cylinder (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas
- Great Icosahedron Formulas
- Great Stellated Dodecahedron
 Formulas
- Half Cylinder Formulas

- Half Spherical Shell Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas 🚰
- Hollow Cuboid Formulas 🗗
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas 🖸
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas

- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas

- Spherical Zone Formulas
- Square Pillar Formulas
- Stellated Octahedron Formulas
- Trirectangular Tetrahedron
 Formulas
- Truncated Rhombohedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/5/2023 | 3:22:14 PM UTC

Please leave your feedback here...

