Bearing Capacity of Cohesive Soil Formulas

Calculators!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 28 Bearing Capacity of Cohesive Soil Formulas

Bearing Capacity of Cohesive Soil ©

1) Bearing Capacity Factor Dependent on Cohesion for Circular Footing
$f \mathrm{fx} \mathrm{N}_{\mathrm{c}}=\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{1.3 \cdot \mathrm{C}}$
ex $8.540279=\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{1.3 \cdot 1.27 \mathrm{kPa}}$
2) Bearing Capacity Factor Dependent on Cohesion for Square Footing
$f \mathbf{f x} \mathrm{~N}_{\mathrm{c}}=\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{(\mathrm{C}) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex $9.654228=\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{(1.27 \mathrm{kPa}) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
3) Bearing Capacity for Circular Footing given Value of Bearing Capacity Factor
$\mathrm{fx} \mathrm{q}_{\mathrm{f}}=(7.4 \cdot \mathrm{C})+\sigma_{\mathrm{s}}$
ex $55.298 \mathrm{kPa}=(7.4 \cdot 1.27 \mathrm{kPa})+45.9 \mathrm{kN} / \mathrm{m}^{2}$
4) Bearing Capacity of Cohesive Soil for Circular Footing
$f \mathbf{f x} \mathrm{q}_{\mathrm{f}}=\left(1.3 \cdot \mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right)+\sigma_{\mathrm{s}}$
ex $60.759 \mathrm{kPa}=(1.3 \cdot 1.27 \mathrm{kPa} \cdot 9)+45.9 \mathrm{kN} / \mathrm{m}^{2}$
5) Bearing Capacity of Cohesive Soil for Square Footing
$f x q_{f}=\left(\left(C \cdot N_{c}\right) \cdot\left(1+0.3 \cdot\left(\frac{B}{L}\right)\right)\right)+\sigma_{s}$
ex $59.0445 \mathrm{kPa}=\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+45.9 \mathrm{kN} / \mathrm{m}^{2}$
6) Cohesion of Soil for Circular Footing given Value of Bearing Capacity Factor
$\mathrm{C}=\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{7.4}$
ex $1.905405 \mathrm{kPa}=\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{7.4}$
7) Cohesion of Soil given Bearing Capacity for Circular Footing
$\mathrm{fx} C=\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{1.3 \cdot \mathrm{~N}_{\mathrm{c}}}$
ex $1.205128 \mathrm{kPa}=\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{1.3 \cdot 9}$
8) Cohesion of Soil given Bearing Capacity for Square Footing
$f \mathbf{f x}=\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{\left(\mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex $1.362319 \mathrm{kPa}=\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{(9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
9) Effective Surcharge for Circular Footing given Value of Bearing Capacity Factor
$f \mathrm{fx} \sigma_{\mathrm{s}}=\mathrm{q}_{\mathrm{f}}-(7.4 \cdot \mathrm{C})$
ex $50.602 \mathrm{kN} / \mathrm{m}^{2}=60 \mathrm{kPa}-(7.4 \cdot 1.27 \mathrm{kPa})$
10) Effective Surcharge given Bearing Capacity for Circular Footing
$f \mathbf{x} \sigma_{\mathrm{s}}=\left(\mathrm{q}_{\mathrm{f}}-\left(1.3 \cdot \mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right)\right)$
ex $45.141 \mathrm{kN} / \mathrm{m}^{2}=(60 \mathrm{kPa}-(1.3 \cdot 1.27 \mathrm{kPa} \cdot 9))$
11) Effective Surcharge given Bearing Capacity for Square Footing
$\sigma_{\mathrm{s}}=\mathrm{q}_{\mathrm{f}}-\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)$
ex $46.8555 \mathrm{kN} / \mathrm{m}^{2}=60 \mathrm{kPa}-\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)$
12) Length of Footing given Bearing Capacity for Square Footing
$\mathrm{L}=\frac{0.3 \cdot \mathrm{~B}}{\left(\frac{\mathrm{q}_{\mathrm{f}}-\sigma_{\mathrm{s}}}{\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}}\right)-1}$
Open Calculator
$2.568539 \mathrm{~m}=\frac{0.3 \cdot 2 \mathrm{~m}}{\left(\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{1.27 \mathrm{kPa} \cdot 9}\right)-1}$
13) Width of Footing given Bearing Capacity for Square Footing
$f \mathbf{x}=\left(\left(\frac{q_{f}-\sigma_{s}}{C \cdot N_{c}}\right)-1\right) \cdot\left(\frac{L}{0.3}\right)$
Open Calculator
$\mathbf{x} 3.114611 \mathrm{~m}=\left(\left(\frac{60 \mathrm{kPa}-45.9 \mathrm{kN} / \mathrm{m}^{2}}{1.27 \mathrm{kPa} \cdot 9}\right)-1\right) \cdot\left(\frac{4 \mathrm{~m}}{0.3}\right)$

Frictional Cohesive Soil

14) Bearing Capacity Factor Dependent on Cohesion for Rectangular Footing
$\mathrm{N}_{\mathrm{c}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(0.4 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right)\right)}{(\mathrm{C}) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex $8.873673=\frac{127.8 \mathrm{kPa}-\left(\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)\right)}{(1.27 \mathrm{kPa}) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
15) Bearing Capacity Factor Dependent on Cohesion for Rectangular Footing given Shape Factor
$f \times \mathrm{N}_{\mathrm{c}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(\left(0.5 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)\right)}{(\mathrm{C}) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex $6.901746=\frac{127.8 \mathrm{kPa}-\left(\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(\left(0.5 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right) \cdot\left(1-0.2 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)\right)}{(1.27 \mathrm{kPa}) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
16) Bearing Capacity Factor Dependent on Surcharge for Rectangular Footing
$f x \mathrm{~N}_{\mathrm{q}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(0.4 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right)\right)}{\sigma_{\mathrm{s}}}$
$\mathbf{e x} 1.99598=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)\right)}{45.9 \mathrm{kN} / \mathrm{m}^{2}}$
17) Bearing Capacity Factor Dependent on Surcharge for Rectangular Footing given Shape Factor
$\mathrm{N}_{\mathrm{q}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\left(0.5 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)\right)}{\sigma_{\mathrm{s}}}$
ex
$1.933235=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(\left(0.5 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right) \cdot\left(1-0.2 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)\right)}{45.9 \mathrm{kN} / \mathrm{m}^{2}}$
18) Bearing Capacity Factor Dependent on Unit Weight for Rectangular Footing
$\mathrm{N}_{\gamma}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)\right)}{0.4 \cdot \mathrm{~B} \cdot \gamma}$
ex $1.587188=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)\right)}{0.4 \cdot 2 \mathrm{~m} \cdot 18 \mathrm{kN} / \mathrm{m}^{3}}$
19) Bearing Capacity Factor Dependent on Weight for Rectangular Footing given Shape Factor
$f \times N_{\gamma}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)\right)}{(0.5 \cdot \mathrm{~B} \cdot \gamma) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex
$1.410833=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)\right)}{\left(0.5 \cdot 2 \mathrm{~m} \cdot 18 \mathrm{kN} / \mathrm{m}^{3}\right) \cdot\left(1-0.2 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
20) Cohesion of Soil for Rectangular Footing given Shape Factor
$f \mathrm{fx}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(\left(0.5 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)\right)}{\left(\mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
$0.973913 \mathrm{kPa}=\frac{127.8 \mathrm{kPa}-\left(\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(\left(0.5 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right) \cdot\left(1-0.2 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)\right)}{(9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
21) Cohesion of Soil given Ultimate Bearing Capacity for Rectangular Footing
$f x C=\frac{q_{f c}-\left(\left(\sigma_{s} \cdot N_{q}\right)+\left(0.4 \cdot \gamma \cdot B \cdot N_{\gamma}\right)\right)}{\left(N_{c}\right) \cdot\left(1+0.3 \cdot\left(\frac{B}{L}\right)\right)}$
ex $1.252174 \mathrm{kPa}=\frac{127.8 \mathrm{kPa}-\left(\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)\right)}{(9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
22) Effective Surcharge for Rectangular Footing
$f \mathrm{f} \sigma_{\mathrm{s}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(0.4 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right)\right)}{\mathrm{N}_{\mathrm{q}}}$
Open Calculator
ex $45.80775 \mathrm{kN} / \mathrm{m}^{2}=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)\right)}{2.0}$
23) Effective Surcharge for Rectangular Footing given Shape Factor
fx
Open Calculator
$\sigma_{\mathrm{s}}=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\left(0.5 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)\right)}{\mathrm{N}_{\mathrm{q}}}$
ex
$44.36775 \mathrm{kN} / \mathrm{m}^{2}=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(\left(0.5 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right) \cdot(1-0.2 \cdot(.\right.\right.}{2.0}$
24) Length of Rectangular Footing given Ultimate Bearing Capacity
$\mathrm{fx} \mathrm{L}=\frac{0.3 \cdot \mathrm{~B}}{\left(\frac{\mathrm{q}_{\mathrm{f}_{\mathrm{c}}}-\left(\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(0.4 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right)\right)}{\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}}\right)-1}$
ex $4.482353 \mathrm{~m}=\frac{0.3 \cdot 2 \mathrm{~m}}{\left(\frac{127.8 \mathrm{kPa}-\left(\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)\right)}{1.27 \mathrm{kPa} \cdot 9}\right)-1}$
25) Ultimate Bearing Capacity for Rectangular Footing
$f \mathrm{fx} \mathrm{q}_{\mathrm{fc}}=\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(0.4 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right)$
ex $127.9845 \mathrm{kPa}=\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(0.4 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right)$
26) Ultimate Bearing Capacity for Rectangular Footing given Shape Factor
$\mathrm{q}_{\mathrm{fc}}=\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)+\left(\left(0.5 \cdot \gamma \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)$
ex
$130.8645 \mathrm{kPa}=\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)+\left(\left(0.5 \cdot 18 \mathrm{kN} / \mathrm{m}^{3} \cdot 2 \mathrm{~m} \cdot 1.6\right) \cdot(1\right.$
27) Unit Weight of Soil for Rectangular Footing given Shape Factor
$\mathbf{f x} \gamma=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)\right)}{\left(0.5 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}\right) \cdot\left(1-0.2 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)}$
ex $15.87187 \mathrm{kN} / \mathrm{m}^{3}=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)\right)}{(0.5 \cdot 2 \mathrm{~m} \cdot 1.6) \cdot\left(1-0.2 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)}$
28) Unit Weight of Soil given Ultimate Bearing Capacity for Rectangular Footing
$\mathrm{fx} \gamma=\frac{\mathrm{q}_{\mathrm{fc}}-\left(\left(\left(\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}\right) \cdot\left(1+0.3 \cdot\left(\frac{\mathrm{~B}}{\mathrm{~L}}\right)\right)\right)+\left(\sigma_{\mathrm{s}} \cdot \mathrm{N}_{\mathrm{q}}\right)\right)}{0.4 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}}$
ex $17.85586 \mathrm{kN} / \mathrm{m}^{3}=\frac{127.8 \mathrm{kPa}-\left(\left((1.27 \mathrm{kPa} \cdot 9) \cdot\left(1+0.3 \cdot\left(\frac{2 \mathrm{~m}}{4 \mathrm{~m}}\right)\right)\right)+\left(45.9 \mathrm{kN} / \mathrm{m}^{2} \cdot 2.0\right)\right)}{0.4 \cdot 2 \mathrm{~m} \cdot 1.6}$

Variables Used

- B Width of Footing (Meter)
- C Cohesion in Soil as Kilopascal (Kilopascal)
- L Length of Footing (Meter)
- $\mathbf{N}_{\mathbf{c}}$ Bearing Capacity Factor dependent on Cohesion
- $\mathbf{N}_{\mathbf{q}}$ Bearing Capacity Factor dependent on Surcharge
- $\mathbf{N}_{\mathbf{Y}}$ Bearing Capacity Factor dependent on Unit Weight
- \mathbf{q}_{f} Ultimate Bearing Capacity (Kilopascal)
- q_{fc} Ultimate Bearing Capacity in Soil (Kilopascal)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- $\boldsymbol{\sigma}_{\mathbf{s}}$ Effective Surcharge in KiloPascal (Kilonewton per Square Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Pressure in Kilopascal (kPa), Kilonewton per Square Meter ($\mathrm{kN} / \mathrm{m}^{2}$) Pressure Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter ($\mathrm{kN} / \mathrm{m}^{3}$) Specific Weight Unit Conversion

Check other formula lists

Feel free to SHARE this document with your friends!

PDF Available in
English Spanish French German Russian Italian Portuguese Polish Dutch

