

Bearing Capacity of Cohesive Soil Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 28 Bearing Capacity of Cohesive Soil Formulas

Bearing Capacity of Cohesive Soil 🕑

1) Bearing Capacity Factor Dependent on Cohesion for Circular Footing (
1)
$$N_c = \frac{q_f - \sigma_s}{1.3 \cdot C}$$

2) $8.540279 = \frac{60kPa - 45.9kN/m^2}{1.3 \cdot 1.27kPa}$
2) Bearing Capacity Factor Dependent on Cohesion for Square Footing (
2) $P_c = \frac{q_f - \sigma_s}{(C) \cdot (1 + 0.3 \cdot (\frac{B}{L}))}$
3) $P_c = \frac{60kPa - 45.9kN/m^2}{(1.27kPa) \cdot (1 + 0.3 \cdot (\frac{2m}{4m}))}$
3) Bearing Capacity for Circular Footing given Value of Bearing Capacity Factor (
2) $P_c = \frac{60kPa - 45.9kN/m^2}{(1.27kPa) \cdot (1 + 0.3 \cdot (\frac{2m}{4m}))}$
3) Bearing Capacity for Circular Footing given Value of Bearing Capacity Factor (
2) $P_c = \frac{60kPa - 45.9kN/m^2}{(1.27kPa) + 45.9kN/m^2}$
4) Bearing Capacity of Cohesive Soil for Circular Footing (
2) $P_c = \frac{60kPa - 45.9kN/m^2}{(1.27kPa - 9) + 45.9kN/m^2}$
5) Bearing Capacity of Cohesive Soil for Square Footing (
2) $q_f = ((C \cdot N_c) \cdot (1 + 0.3 \cdot (\frac{B}{L}))) + \sigma_s$
2) p_{en} Calculator (
2) p_{en} Calculator (
3) p_{en} Calculator (
3) p_{en} Calculator (
4) $q_f = ((C \cdot N_c) \cdot (1 + 0.3 \cdot (\frac{B}{L}))) + \sigma_s$
5) p_{en} Calculator (
6) p_{en}

6) Cohesion of Soil for Circular Footing given Value of Bearing Capacity Factor 🗹

12) Length of Footing given Bearing Capacity for Square Footing

fx
$$\mathbf{L} = rac{0.3 \cdot \mathrm{B}}{\left(rac{\mathrm{q}_{\mathrm{f}} - \sigma_{\mathrm{s}}}{\mathrm{C} \cdot \mathrm{N}_{\mathrm{c}}}
ight) - 1}$$

 $\underbrace{\textbf{ex}} 2.568539 \text{m} = \frac{0.3 \cdot 2 \text{m}}{\left(\frac{60 \text{kPa} - 45.9 \text{kN}/\text{m}^2}{1.27 \text{kPa} \cdot 9}\right) - 1}$

13) Width of Footing given Bearing Capacity for Square Footing

$$\mathbf{fx} \mathbf{B} = \left(\left(\frac{\mathbf{q}_{\mathrm{f}} - \sigma_{\mathrm{s}}}{\mathbf{C} \cdot \mathbf{N}_{\mathrm{c}}} \right) - 1 \right) \cdot \left(\frac{\mathbf{L}}{0.3} \right)$$

ex
$$3.114611 \text{m} = \left(\left(\frac{60 \text{kPa} - 45.9 \text{kN/m}^2}{1.27 \text{kPa} \cdot 9} \right) - 1 \right) \cdot \left(\frac{4 \text{m}}{0.3} \right)$$

Frictional Cohesive Soil 🕑

14) Bearing Capacity Factor Dependent on Cohesion for Rectangular Footing

$$\mathbf{\hat{K}} \mathbf{N}_{c} = \frac{\mathbf{q}_{fc} - \left(\left(\sigma_{s} \cdot \mathbf{N}_{q} \right) + \left(0.4 \cdot \gamma \cdot \mathbf{B} \cdot \mathbf{N}_{\gamma} \right) \right)}{\left(\mathbf{C} \right) \cdot \left(1 + 0.3 \cdot \left(\frac{\mathbf{B}}{\mathbf{L}} \right) \right)}$$

$$8.873673 = \frac{127.8 \text{kPa} - \left(\left(45.9 \text{kN} / \text{m}^2 \cdot 2.0 \right) + \left(0.4 \cdot 18 \text{kN} / \text{m}^3 \cdot 2\text{m} \cdot 1.6 \right) \right)}{\left(1.27 \text{kPa} \right) \cdot \left(1 + 0.3 \cdot \left(\frac{2\text{m}}{4\text{m}} \right) \right)}$$

15) Bearing Capacity Factor Dependent on Cohesion for Rectangular Footing given Shape Factor 💪

$$\label{eq:Nc} \boxed{ N_{c} = \frac{q_{fc} - \left(\left(\sigma_{s} \cdot N_{q} \right) + \left(\left(0.5 \cdot \gamma \cdot B \cdot N_{\gamma} \right) \cdot \left(1 - 0.2 \cdot \left(\frac{B}{L} \right) \right) \right) \right) }{(C) \cdot \left(1 + 0.3 \cdot \left(\frac{B}{L} \right) \right) } }$$
 Open Calculator CF

$$\mathbf{x} \ 6.901746 = \frac{127.8 \text{kPa} - \left(\left(45.9 \text{kN}/\text{m}^2 \cdot 2.0 \right) + \left(\left(0.5 \cdot 18 \text{kN}/\text{m}^3 \cdot 2\text{m} \cdot 1.6 \right) \cdot \left(1 - 0.2 \cdot \left(\frac{2\text{m}}{4\text{m}} \right) \right) \right) \right)}{\left(1.27 \text{kPa} \right) \cdot \left(1 + 0.3 \cdot \left(\frac{2\text{m}}{4\text{m}} \right) \right)}$$

16) Bearing Capacity Factor Dependent on Surcharge for Rectangular Footing

$$\mathbf{\hat{x}} \mathbf{N}_{q} = \frac{\mathbf{q}_{fc} - \left(\left((\mathbf{C} \cdot \mathbf{N}_{c}) \cdot \left(1 + 0.3 \cdot \left(\frac{\mathbf{B}}{\mathbf{L}}\right)\right)\right) + \left(0.4 \cdot \gamma \cdot \mathbf{B} \cdot \mathbf{N}_{\gamma}\right)\right)}{\sigma_{s}}$$

$$127.8kP_{2} - \left(\left((1.27kP_{2} \cdot 9) \cdot \left(1 + 0.3 \cdot \left(\frac{2m}{\mathbf{L}}\right)\right)\right) + \left(0.4 \cdot 18kN/m^{3}\right)\right)$$

$$1.99598 = \frac{127.8 \text{kPa} - \left(\left((1.27 \text{kPa} \cdot 9) \cdot \left(1 + 0.3 \cdot \left(\frac{2\text{m}}{4\text{m}}\right)\right)\right) + \left(0.4 \cdot 18 \text{kN}/\text{m}^3 \cdot 2\text{m} \cdot 1.6\right)\right)}{45.9 \text{kN}/\text{m}^2}$$

eχ

e

Open Calculator

Open Calculator

Open Calculator

Open Calculator 🖸

22) Effective Surcharge for Rectangular Footing
$$\begin{bmatrix} I \\ I \\ I \end{bmatrix}$$
 (Corrected and the equation of the expectation of the equation of the equatio

6/10

27) Unit Weight of Soil for Rectangular Footing given Shape Factor \checkmark $\gamma = \frac{q_{fc} - \left(\left((C \cdot N_c) \cdot (1 + 0.3 \cdot \left(\frac{B}{L}\right))\right) + (\sigma_s \cdot N_q)\right)}{\left(0.5 \cdot B \cdot N_\gamma\right) \cdot \left(1 - 0.2 \cdot \left(\frac{B}{L}\right)\right)}$ (Dem Calculator \checkmark 15.87187kN/m³ = $\frac{127.8kPa - \left(\left((1.27kPa \cdot 9) \cdot (1 + 0.3 \cdot \left(\frac{2m}{4m}\right))\right) + (45.9kN/m^2 \cdot 2.0)\right)}{(0.5 \cdot 2m \cdot 1.6) \cdot (1 - 0.2 \cdot \left(\frac{2m}{4m}\right))}$ 28) Unit Weight of Soil given Ultimate Bearing Capacity for Rectangular Footing \checkmark $\gamma = \frac{q_{fc} - \left(\left((C \cdot N_c) \cdot (1 + 0.3 \cdot \left(\frac{B}{L}\right)\right)\right) + (\sigma_s \cdot N_q)\right)}{0.4 \cdot B \cdot N_\gamma}$ (Dem Calculator \checkmark 17.85586kN/m³ = $\frac{127.8kPa - \left(\left((1.27kPa \cdot 9) \cdot (1 + 0.3 \cdot \left(\frac{2m}{4m}\right))\right) + (45.9kN/m^2 \cdot 2.0)\right)}{0.4 \cdot 2m \cdot 1.6}$

Variables Used

- B Width of Footing (Meter)
- C Cohesion in Soil as Kilopascal (Kilopascal)
- L Length of Footing (Meter)
- N_c Bearing Capacity Factor dependent on Cohesion
- + $\mathbf{N}_{\mathbf{q}}$ Bearing Capacity Factor dependent on Surcharge
- + $\mathbf{N}_{\mathbf{V}}$ Bearing Capacity Factor dependent on Unit Weight
- **q**f Ultimate Bearing Capacity (Kilopascal)
- **qfc** Ultimate Bearing Capacity in Soil (Kilopascal)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- σ_s Effective Surcharge in KiloPascal (Kilonewton per Square Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Pressure in Kilopascal (kPa), Kilonewton per Square Meter (kN/m²) Pressure Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/3/2024 | 11:26:04 PM UTC

Please leave your feedback here...

