Important Formulas of Half Cylinder

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 20 Important Formulas of Half Cylinder

Important Formulas of Half Cylinder ©

Height of Half Cylinder ${ }^{〔}$

1) Height of Half Cylinder given Curved Surface Area
$\mathrm{fx} \mathrm{h}=\frac{\mathrm{CSA}}{\pi \cdot \mathrm{r}}$
ex $11.93662 \mathrm{~m}=\frac{375 \mathrm{~m}^{2}}{\pi \cdot 10 \mathrm{~m}}$
2) Height of Half Cylinder given Space Diagonal
$f x h=\sqrt{d_{\text {Space }}^{2}-\mathrm{r}^{2}}$
ex $11.18034 m=\sqrt{(15 m)^{2}-(10 m)^{2}}$
3) Height of Half Cylinder given Volume $\boxed{\square}$
$f \mathrm{fx}=\frac{2 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}^{2}}$
ex $12.00028 \mathrm{~m}=\frac{2 \cdot 1885 \mathrm{~m}^{3}}{\pi \cdot(10 \mathrm{~m})^{2}}$

Radius of Half Cylinder ©

4) Radius of Half Cylinder given Base Area
$\mathrm{fx} r=\sqrt{\frac{2 \cdot \mathrm{~A}_{\text {Base }}}{\pi}}$
ex $9.933583 \mathrm{~m}=\sqrt{\frac{2 \cdot 155 \mathrm{~m}^{2}}{\pi}}$
5) Radius of Half Cylinder given Curved Surface Area
$f \mathrm{x}=\frac{\mathrm{CSA}}{\pi \cdot h}$
ex $9.947184 \mathrm{~m}=\frac{375 \mathrm{~m}^{2}}{\pi \cdot 12 \mathrm{~m}}$
6) Radius of Half Cylinder given Space Diagonal
$f \mathrm{x} x=\sqrt{\mathrm{d}_{\text {Space }}^{2}-\mathrm{h}^{2}}$
ex $9 \mathrm{~m}=\sqrt{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}}$

Space Diagonal of Half Cylinder ©

7) Space Diagonal of Half Cylinder
$f \mathrm{f} \mathrm{d}_{\text {Space }}=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
ex $15.6205 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}}$
8) Space Diagonal of Half Cylinder given Curved Surface Area and Height
$f \mathbf{f x} \mathrm{~d}_{\text {Space }}=\sqrt{\mathrm{h}^{2}+\left(\frac{\mathrm{CSA}}{\pi \cdot \mathrm{h}}\right)^{2}}$
ex $15.58674 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+\left(\frac{375 \mathrm{~m}^{2}}{\pi \cdot 12 \mathrm{~m}}\right)^{2}}$
9) Space Diagonal of Half Cylinder given Volume and Height
$f \mathrm{x} \mathrm{d}_{\text {Space }}=\sqrt{\mathrm{h}^{2}+\left(\frac{2 \cdot \mathrm{~V}}{\pi \cdot \mathrm{~h}}\right)}$
ex $15.62057 \mathrm{~m}=\sqrt{(12 \mathrm{~m})^{2}+\left(\frac{2 \cdot 1885 \mathrm{~m}^{3}}{\pi \cdot 12 \mathrm{~m}}\right)}$

Surface Area of Half Cylinder

10) Base Area of Half Cylinder
$\mathrm{fx} \mathrm{A}_{\text {Base }}=\frac{\pi \cdot \mathrm{r}^{2}}{2}$
ex $157.0796 \mathrm{~m}^{2}=\frac{\pi \cdot(10 \mathrm{~m})^{2}}{2}$
11) Curved Surface Area of Half Cylinder $\boxed{\square}$
fx $\mathrm{CSA}=\pi \cdot \mathrm{r} \cdot \mathrm{h}$
ex $376.9911 \mathrm{~m}^{2}=\pi \cdot 10 \mathrm{~m} \cdot 12 \mathrm{~m}$
12) Curved Surface Area of Half Cylinder given Space Diagonal and Height
$\mathrm{fx} \mathrm{CSA}=\pi \cdot \mathrm{h} \cdot \sqrt{\mathrm{d}_{\text {Space }}^{2}-\mathrm{h}^{2}}$
ex $339.292 \mathrm{~m}^{2}=\pi \cdot 12 \mathrm{~m} \cdot \sqrt{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}}$
13) Curved Surface Area of Half Cylinder given Space Diagonal and Radius
$\mathrm{ff}_{\mathrm{x}}^{\mathrm{CSA}}=\pi \cdot \mathrm{r} \cdot \sqrt{\mathrm{d}_{\text {Space }}^{2}-\mathrm{r}^{2}}$
ex $351.2407 \mathrm{~m}^{2}=\pi \cdot 10 \mathrm{~m} \cdot \sqrt{(15 \mathrm{~m})^{2}-(10 \mathrm{~m})^{2}}$
14) Total Surface Area of Half Cylinder
$\mathrm{fx} \mathrm{TSA}=(\pi \cdot \mathrm{r} \cdot(\mathrm{h}+\mathrm{r}))+(2 \cdot \mathrm{r} \cdot \mathrm{h})$
ex $931.1504 \mathrm{~m}^{2}=(\pi \cdot 10 \mathrm{~m} \cdot(12 \mathrm{~m}+10 \mathrm{~m}))+(2 \cdot 10 \mathrm{~m} \cdot 12 \mathrm{~m})$
15) Total Surface Area of Half Cylinder given Curved Surface Area and Radius
$\mathrm{f} \times \mathrm{TSA}=\mathrm{CSA}+\pi \cdot \mathrm{r}^{2}+\frac{2 \cdot \mathrm{CSA}}{\pi}$
ex $927.8917 \mathrm{~m}^{2}=375 \mathrm{~m}^{2}+\pi \cdot(10 \mathrm{~m})^{2}+\frac{2 \cdot 375 \mathrm{~m}^{2}}{\pi}$
16) Total Surface Area of Half Cylinder given Space Diagonal and Height

$f x$

$\mathrm{TSA}=\left(\pi \cdot \sqrt{\mathrm{d}_{\text {Space }}^{2}-\mathrm{h}^{2}} \cdot\left(\mathrm{~h}+\sqrt{\mathrm{d}_{\text {Space }}^{2}-\mathrm{h}^{2}}\right)\right)+\left(2 \cdot \sqrt{\mathrm{~d}_{\text {Space }}^{2}-\mathrm{h}^{2}} \cdot \mathrm{~h}\right)$
ex
$809.761 \mathrm{~m}^{2}=\left(\pi \cdot \sqrt{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}} \cdot\left(12 \mathrm{~m}+\sqrt{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}}\right)\right)+\left(2 \cdot \sqrt{(15 \mathrm{~m})^{2}-(12 \mathrm{~m})^{2}} \cdot 12 \mathrm{~m}\right)$
17) Total Surface Area of Half Cylinder given Volume and Radius
$f \mathrm{x} T \mathrm{TSA}=\frac{2 \cdot \mathrm{~V}}{\mathrm{r}}+\pi \cdot \mathrm{r}^{2}+\frac{4 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}}$
ex $931.1649 \mathrm{~m}^{2}=\frac{2 \cdot 1885 \mathrm{~m}^{3}}{10 \mathrm{~m}}+\pi \cdot(10 \mathrm{~m})^{2}+\frac{4 \cdot 1885 \mathrm{~m}^{3}}{\pi \cdot 10 \mathrm{~m}}$

Volume of Half Cylinder ©

18) Volume of Half Cylinder
$f \mathrm{f} \mathrm{V}=\frac{1}{2} \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h}$
ex $1884.956 \mathrm{~m}^{3}=\frac{1}{2} \cdot \pi \cdot(10 \mathrm{~m})^{2} \cdot 12 \mathrm{~m}$
19) Volume of Half Cylinder given Curved Surface Area and Height
$f_{\mathrm{x}} \mathrm{V}=\frac{1}{2} \cdot \frac{\mathrm{CSA}^{2}}{\pi \cdot \mathrm{~h}}$
ex $1865.097 \mathrm{~m}^{3}=\frac{1}{2} \cdot \frac{\left(375 \mathrm{~m}^{2}\right)^{2}}{\pi \cdot 12 \mathrm{~m}}$
20) Volume of Half Cylinder given Space Diagonal and Radius
$\mathrm{fx} \mathrm{V}=\frac{1}{2} \cdot \pi \cdot \mathrm{r}^{2} \cdot \sqrt{\mathrm{~d}_{\text {Space }}^{2}-\mathrm{r}^{2}}$
ex $1756.204 \mathrm{~m}^{3}=\frac{1}{2} \cdot \pi \cdot(10 \mathrm{~m})^{2} \cdot \sqrt{(15 \mathrm{~m})^{2}-(10 \mathrm{~m})^{2}}$

Variables Used

- ABase Base Area of Half Cylinder (Square Meter)
- CSA Curved Surface Area of Half Cylinder (Square Meter)
- d Space Space Diagonal of Half Cylinder (Meter)
- \mathbf{h} Height of Half Cylinder (Meter)
- r Radius of Half Cylinder (Meter)
- TSA Total Surface Area of Half Cylinder (Square Meter)
- V Volume of Half Cylinder (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas \longleftarrow
- Cylinder Formulas Ξ
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas 5
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas
- Great Icosahedron Formulas
- Great Stellated Dodecahedron Formulas
- Half Cylinder Formulas
- Half Spherical Shell Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas \int
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas Ξ
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas
- Spherical Zone Formulas
- Square Pillar Formulas
- Stellated Octahedron Formulas
- Trirectangular Tetrahedron Formulas
- Truncated Rhombohedron Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

