

Important Formulas in Distillation Mass Transfer Operation

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Important Formulas in Distillation Mass Transfer Operation

Important Formulas in Distillation Mass Transfer Operation &

1) Boil-Up Ratio

$$\text{fx} \boxed{R_v = \frac{V}{W}}$$

$$1.866667 = rac{11.2 ext{mol/s}}{6 ext{mol/s}}$$

2) Equilibrium Vaporization Ratio for Less Volatile Component

$$extbf{K} extbf{K}_{ ext{LVC}} = rac{ ext{y}_{ ext{LVC}}}{ ext{x}_{ ext{LVC}}}$$

$$\boxed{\mathbf{ex} \ 0.192 = \frac{0.12}{0.625}}$$

3) Equilibrium Vaporization Ratio for More Volatile Component

$$\mathbf{K} \left[\mathrm{K}_{\mathrm{MVC}} = rac{\mathrm{y}_{\mathrm{MVC}}}{\mathrm{x}_{\mathrm{MVC}}}
ight]$$

$$\boxed{1.973333 = \frac{0.74}{0.375}}$$

4) External Reflux Ratio

$$m R = rac{L_0}{D}$$

$$1.547619 = rac{6.5 ext{mol/s}}{4.2 ext{mol/s}}$$

5) Feed Q-Value in Distillation Column

$$\mathbf{f} \mathbf{x} = rac{\mathbf{H}_{ ext{v-f}}}{\lambda}$$

$$oxed{ex} 0.606061 = rac{1000 \mathrm{J/mol}}{1650 \mathrm{J/mol}}$$

6) Internal Reflux Ratio

$$R_{Internal} = \frac{L}{D}$$

Open Calculator 🗗

$$2.5 = \frac{10.5 \text{mol/s}}{4.2 \text{mol/s}}$$

7) Minimum Number of Distillation Stages by Fenske's Equation

$$N_{\mathrm{m}} = \left(rac{\log 10 \left(rac{\mathrm{x_D} \cdot (1-\mathrm{x_W})}{\mathrm{x_W} \cdot (1-\mathrm{x_D})}
ight)}{\log 10 \left(lpha_{\mathrm{avg}}
ight)}
ight) - 1$$

Open Calculator 🗗

8) Mole Fraction of MVC in Feed from Overall and Component Material Balance in Distillation

$$\mathbf{x}_{\mathrm{F}} = rac{\mathrm{D} \cdot \mathrm{x}_{\mathrm{D}} + \mathrm{W} \cdot \mathrm{x}_{\mathrm{W}}}{\mathrm{D} + \mathrm{W}}$$

Open Calculator 🗗

9) Moles of Volatile component Volatilized by Steam with Trace amounts of Non-Volatiles

$$\mathbf{m}_{\mathrm{A}} = \mathrm{m}_{\mathrm{S}} \cdot \left(rac{\mathrm{E} \cdot \mathrm{Pvapor_{vc}}}{\mathrm{P} - (\mathrm{E} \cdot \mathrm{Pvapor_{vc}})}
ight)$$

Open Calculator

10) Moles of Volatile component Volatilized by Steam with Trace amounts of Non-Volatiles at Equilibrium

$$\mathbf{K} \left[m_A = m_S \cdot \left(rac{Pvapor_{vc}}{P - Pvapor_{vc}}
ight)
ight]$$

Open Calculator 🗗

$$\boxed{1.714286 \text{mol} = 4 \text{mol} \cdot \left(\frac{30000 \text{Pa}}{100000 \text{Pa} - 30000 \text{Pa}}\right)}$$

11) Moles of Volatile component Volatilized from mixture of Non-Volatiles by Steam 🗗

 $\left. \mathbf{m}_{A} = \mathbf{m}_{S} \cdot \left(rac{\mathbf{E} \cdot \mathbf{x}_{A} \cdot \mathrm{Pvapor}_{\mathrm{vc}}}{\mathbf{P} - \mathbf{E} \cdot \mathbf{x}_{A} \cdot \mathrm{Pvapor}_{\mathrm{vc}}}
ight)
ight|$

Open Calculator

12) Moles of Volatile component Volatilized from mixture of Non-Volatiles by Steam at Equilibrium

 $\mathbf{m}_{A} = \mathbf{m}_{S} \cdot \left(\mathbf{x}_{A} \cdot rac{Pvapor_{vc}}{P - \mathbf{x}_{A} \cdot Pvapor_{vc}}
ight)$

Open Calculator 🗗

 $\boxed{ 1.263158 mol = 4 mol \cdot \left(0.8 \cdot \frac{30000 Pa}{100000 Pa - 0.8 \cdot 30000 Pa} \right) }$

13) Murphree Efficiency of Distillation Column Based on Vapour Phase

 $\mathbf{E}_{\mathrm{Murphree}} = \left(rac{\mathbf{y}_{\mathrm{n}} - \mathbf{y}_{\mathrm{n+1}}}{\mathbf{y}\mathbf{n}^* - \mathbf{v}_{\mathrm{n+1}}}
ight) \cdot 100$

Open Calculator 🖸

14) Overall Efficiency of Distillation Column

 ${
m E_{overall}} = \left(rac{
m N_{th}}{
m N_{ac}}
ight) \cdot 100$

Open Calculator

15) Relative Volatility using Equilibrium Vaporization Ratio

 $lpha = rac{K_{
m MVC}}{K_{
m LVC}}$

Open Calculator 🗗

16) Relative Volatility using Mole Fraction

$$lpha = rac{rac{y_{
m Gas}}{1-y_{
m Gas}}}{rac{x_{
m Liquid}}{1-x_{
m Liquid}}}$$

Open Calculator 🖸

$$ex 0.411765 = \frac{ \frac{0.3}{1 - 0.3} }{ \frac{0.51}{1 - 0.51} }$$

17) Relative Volatility using Vapour Pressure

Open Calculator

18) Total Feed Flowrate of Distillation Column from Overall Material Balance

fx F = D + W

Open Calculator

19) Total Pressure using Mole Fraction and Saturated Pressure

 $\mathbf{E} \mathbf{P}_{\mathrm{T}} = (\mathbf{X} \cdot \mathbf{P}_{\mathrm{MVC}}) + ((1 - \mathbf{X}) \cdot \mathbf{P}_{\mathrm{LVC}})^{\mathrm{T}}$

Open Calculator 🗗

 $(153250 Pa = (0.55 \cdot 250000 Pa) + ((1 - 0.55) \cdot 35000 Pa)$

20) Total Steam Required to Vaporize Volatile Component

fx

Open Calculator

$$M_{s} = \left(\left(\left(\frac{P}{E \cdot Pvapor_{vc}}\right) - 1\right) \cdot \left(m_{Ai} - m_{Af}\right)\right) + \left(\left(P \cdot \frac{m_{c}}{E \cdot Pvapor_{vc}}\right) \cdot ln\left(\frac{m_{Ai}}{m_{Af}}\right)\right)$$

ex

$$\boxed{33.98579 mol = \left(\left(\left(\frac{100000 Pa}{0.75 \cdot 30000 Pa}\right) - 1\right) \cdot \left(5.1 mol - 0.63 mol\right)\right) + \left(\left(100000 Pa \cdot \frac{2 mol}{0.75 \cdot 30000 Pa}\right) \cdot ln\left(\frac{1}{100000 Pa}\right) - 1\right)}$$

Variables Used

- **D** Distillate Flowrate from Distillation Column (Mole per Second)
- D Distillate Flowrate (Mole per Second)
- E Vaporizing Efficiency
- E_{Murphree} Murphree Efficiency of Distillation Column
- Eoverall Overall Efficiency of Distillation Column
- **F** Feed Flowrate to Distillation Column (Mole per Second)
- **H_{V-f}** Heat Required to Convert Feed to Saturated Vapor (Joule Per Mole)
- K_{LVC} Equilibrium Vaporization Ratio of LVC
- K_{MVC} Equilibrium Vaporization Ratio of MVC
- L Internal Reflux Flowrate to Distillation Column (Mole per Second)
- Lo External Reflux Flowrate to Distillation Column (Mole per Second)
- m_A Moles of Volatile Component (Mole)
- mAf Final Moles of Volatile Component (Mole)
- mai Initial Moles of Volatile Component (Mole)
- **m**_c Moles of Non-Volatile Component (Mole)
- m_S Moles of Steam (Mole)
- Ms Total Steam Required to Vaporize Volatile Comp (Mole)
- Nac Actual Number of Plates
- N_m Minimum Number of Stages
- N_{th} Ideal Number of Plates
- P Total Pressure of System (Pascal)
- PLVC Partial Pressure of Less Volatile Component (Pascal)
- P_{MVC} Partial Pressure of More Volatile Component (Pascal)
- P_T Total Pressure of Gas (Pascal)
- Pa^{Sat} Saturated Vapour Pressure of More Volatile Comp (Pascal)
- PbSat Saturated Vapour Pressure of Less Volatile Comp (Pascal)
- Pvapor_{vc} Vapor Pressure of Volatile Component (Pascal)
- Q Q-value in Mass Transfer
- R External Reflux Ratio
- RInternal Internal Reflux Ratio
- R_v Boil-Up Ratio
- **V** Boil-Up Flowrate to the Distillation Column (Mole per Second)
- W Residue Flowrate from Distillation Column (Mole per Second)

- X Mole Fraction of MVC in Liq Phase
- XA Mole Fraction of Volatile Comp in Non-Volatiles
- XD Mole Fraction of More Volatile Comp in Distillate
- XF Mole Fraction of More Volatile Component in Feed
- . XLiquid Mole Fraction of Component in Liquid Phase
- XLVC Mole Fraction of LVC in Liquid Phase
- XMVC Mole Fraction of MVC in Liquid Phase
- Xw Mole Fraction of More Volatile Comp in Residue
- YGas Mole Fraction of Component in Vapor Phase
- YLVC Mole Fraction of LVC in Vapor Phase
- YMVC Mole Fraction of MVC in Vapor Phase
- **y**_n Average Mole Fraction of Vapour on Nth Plate
- y_{n+1} Average Mole Fraction of Vapour at N+1 Plate
- yn* Average Mole Fraction at Equilibrium on Nth Plate
- α Relative Volatility
- α_{avg} Average Relative Volatility
- λ Molal Latent Heat of Vaporization of Saturated Liq (Joule Per Mole)

Constants, Functions, Measurements used

- Function: In, In(Number)

 Natural logarithm function (base e)
- Function: log10, log10(Number)
 Common logarithm function (base 10)
- Measurement: Amount of Substance in Mole (mol)

 Amount of Substance Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Molar Flow Rate in Mole per Second (mol/s)

 Molar Flow Rate Unit Conversion
- Measurement: Energy Per Mole in Joule Per Mole (J/mol)

 Energy Per Mole Unit Conversion

Check other formula lists

- Continuous Distillation Formulas
- Important Formulas in Distillation Mass Transfer Operation
- Material Balance Formulas
- Relative Volatility & Vaporization Ratio Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/19/2023 | 6:54:28 AM UTC

Please leave your feedback here...

