
calculatoratoz.com

unitsconverters.com

Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas

Mix Design, Modulus of Elasticity and Tensile Strength of Concrete \mathbb{B}

Job Mix Concrete Volume [a

1) Absolute Volume of Component $\sqrt{\square}$
$f x \mathrm{~V}_{\mathrm{a}}=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{SG} \cdot \rho_{\text {water }}}$
Open Calculator
ex $0.375 \mathrm{~m}^{3}=\frac{900 \mathrm{~kg}}{2.4 \cdot 1000.001 \mathrm{~kg} / \mathrm{m}^{3}}$
2) Gel-Space Ratio for Complete Hydration
$\mathrm{fx} \mathrm{GS}=\frac{0.657 \cdot \mathrm{C}}{(0.319 \cdot \mathrm{C})+\mathrm{Wo}}$
Open Calculator
ex $1.568019=\frac{0.657 \cdot 10 \mathrm{~kg}}{(0.319 \cdot 10 \mathrm{~kg})+1000 \mathrm{~mL}}$
3) Specific Gravity of Material given its Absolute Volume
$\mathrm{fx} \mathrm{SG}=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{a}} \cdot \rho_{\text {water }}}$
Open Calculator
ex $2.399998=\frac{900 \mathrm{~kg}}{0.375 \mathrm{~m}^{3} \cdot 1000.001 \mathrm{~kg} / \mathrm{m}^{3}}$
4) Target Mean Strength for Mix Design
$f \mathrm{fx} \mathrm{f}^{\prime}{ }_{\mathrm{ck}}=\mathrm{f}_{\mathrm{ck}}+(1.65 \cdot \sigma)$
Open Calculator
ex $20.01001 \mathrm{MPa}=20.01 \mathrm{MPa}+(1.65 \cdot 4)$
5) Volume of Empty Capillary Pores
$f \mathrm{fx} \mathrm{Vec}=\left(\mathrm{V}_{\mathrm{cp}}-\mathrm{V}_{\mathrm{wcp}}\right)$
Open Calculator
ex $3.5 \mathrm{~mL}=(8 \mathrm{~mL}-4.5 \mathrm{~mL})$
6) Volume of Products of Hydration Per Unit of Dry Cement
$\mathrm{fx} \mathrm{Vp}=\left(\frac{\mathrm{V}_{\mathrm{hc}}}{\mathrm{V}_{\mathrm{cah}}}\right)$
Open Calculator
$\mathrm{ex} 22.22222 \mathrm{~mm}^{3}=\left(\frac{70 \mathrm{~mL}}{3.15 \mathrm{~g} / \mathrm{mL}}\right)$
7) Water Cement Ratio
$\mathrm{fx} \mathrm{CW}=\frac{\mathrm{w}_{\mathrm{m}}}{\mathrm{w}_{\mathrm{c}}}$
ex $0.45=\frac{9 \mathrm{~kg}}{20 \mathrm{~kg}}$
8) Weight of Cementitious Materials in Concrete Batch
$\mathrm{f}_{\mathrm{x}} \mathrm{w}_{\mathrm{c}}=\frac{\mathrm{w}_{\mathrm{m}}}{\mathrm{CW}}$
$\mathrm{ex} 20 \mathrm{~kg}=\frac{9 \mathrm{~kg}}{0.45}$
9) Weight of Material given its Absolute Volume
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{L}}=\mathrm{V}_{\mathrm{a}} \cdot \mathrm{SG} \cdot \rho_{\text {water }}$
Open Calculator
ex $900.0009 \mathrm{~kg}=0.375 \mathrm{~m}^{3} \cdot 2.4 \cdot 1000.001 \mathrm{~kg} / \mathrm{m}^{3}$
10) Weight of Mixing Water in Batch
$\mathrm{fx} \mathrm{w}_{\mathrm{m}}=\mathrm{CW} \cdot \mathrm{w}_{\mathrm{c}}$
ex $9 \mathrm{~kg}=0.45 \cdot 20 \mathrm{~kg}$

Modulus of Elasticity of Concrete ©

11) Modulus of Elasticity of Concrete $\sqrt{\square}$
$f x E_{c m d}=5000 \cdot\left(f_{c k}\right)^{0.5}$
Open Calculator
ex $22.36627 \mathrm{MPa}=5000 \cdot(20.01 \mathrm{MPa})^{0.5}$

ACl Code ©

12) Modulus of Elasticity of Concrete in SI Units
$f x E_{c}=0.043 \cdot w_{c}^{1.5} \cdot \sqrt{f_{c}^{\prime}}$
Open Calculator
ex $0.027196 \mathrm{MPa}=0.043 \cdot(20 \mathrm{~kg})^{1.5} \cdot \sqrt{50 \mathrm{MPa}}$
13) Modulus of Elasticity of Concrete in USCS Units
$\mathrm{fx} \mathrm{E}_{\mathrm{c}}=33 \cdot \mathrm{w}_{\mathrm{c}}^{1.5} \cdot \sqrt{\mathrm{f}^{\prime}{ }_{\mathrm{c}}}$
Open Calculator
ex $20.87103 \mathrm{MPa}=33 \cdot(20 \mathrm{~kg})^{1.5} \cdot \sqrt{50 \mathrm{MPa}}$
Normal-Weight, Normal-Density Concrete
14) Modulus of Elasticity for Normal Weight Concrete in UCSC Units
$f \mathrm{f} \mathrm{E}_{\mathrm{c}}=57000 \cdot \sqrt{\mathrm{f}^{\prime}{ }_{\mathrm{c}}}$
Open Calculator
ex $403.0509 \mathrm{MPa}=57000 \cdot \sqrt{50 \mathrm{MPa}}$
15) Modulus of Elasticity of Normal Weight and Density Concrete in SI Units
$f_{x} E_{c}=4700 \cdot \sqrt{f^{\prime}}{ }_{c}$
ex $33.23402 \mathrm{MPa}=4700 \cdot \sqrt{50 \mathrm{MPa}}$

Modulus of Rupture

16) Modulus of Rupture of Rectangular Sample in Four-Point Bending
$f \mathrm{fx} \mathrm{f}_{4 \mathrm{ptr}}=\frac{\mathrm{F}_{\mathrm{f}} \cdot \mathrm{L}}{\mathrm{B} \cdot\left(\mathrm{T}^{2}\right)}$
ex $56.25 \mathrm{MPa}=\frac{80 \mathrm{~N} \cdot 180 \mathrm{~mm}}{100 \mathrm{~mm} \cdot\left((1.6 \mathrm{~mm})^{2}\right)}$
17) Modulus of Rupture of Rectangular Sample in Three-Point Bending
$f \mathbf{x} \mathrm{f}_{3 \mathrm{ptr}}=\frac{3 \cdot \mathrm{~F}_{\mathrm{f}} \cdot \mathrm{L}}{2 \cdot \mathrm{~B} \cdot\left(\mathrm{~T}^{2}\right)}$
ex $84.375 \mathrm{MPa}=\frac{3 \cdot 80 \mathrm{~N} \cdot 180 \mathrm{~mm}}{2 \cdot 100 \mathrm{~mm} \cdot\left((1.6 \mathrm{~mm})^{2}\right)}$

Tensile Strength of Concrete ©

18) Maximum Load Applied during Splitting Tensile Strength of Concrete
f. $\mathrm{W}_{\text {load }}=\frac{\sigma \mathrm{sp} \cdot \pi \cdot \mathrm{D}_{1} \cdot \mathrm{~L}_{\mathrm{c}}}{2}$

Open Calculator
ex $3.769911 \mathrm{kN}=\frac{40 \mathrm{~N} / \mathrm{m}^{2} \cdot \pi \cdot 5 \mathrm{~m} \cdot 12 \mathrm{~m}}{2}$
19) Splitting Tensile Strength of Concrete
$f \times \sigma \mathrm{sp}=\frac{2 \cdot \mathrm{~W}_{\text {load }}}{\pi \cdot \mathrm{D}_{1} \cdot \mathrm{~L}_{\mathrm{c}}}$
Open Calculator
ex $38.19719 \mathrm{~N} / \mathrm{m}^{2}=\frac{2 \cdot 3.6 \mathrm{kN}}{\pi \cdot 5 \mathrm{~m} \cdot 12 \mathrm{~m}}$
20) Tensile Strength of Concrete in Combined Stress Design
$f \mathrm{fx} \mathrm{f}_{\mathrm{r}}=7.5 \cdot \sqrt{\mathrm{f}_{\mathrm{c}}}$
Open Calculator
ex $53.03301 \mathrm{MPa}=7.5 \cdot \sqrt{50 \mathrm{MPa}}$
21) Tensile Strength of Normal Weight and Density Concrete in SI Units
$f_{\mathrm{x}} \mathrm{f}_{\mathrm{r}}=0.7 \cdot \sqrt{\mathrm{f}_{\mathrm{c}}}$
Open Calculator
ex $0.00495 \mathrm{MPa}=0.7 \cdot \sqrt{50 \mathrm{MPa}}$

Variables Used

- B Width of Section (Millimeter)
- C Mass Of Cement (Kilogram)
- CW Water Cement Ratio
- \mathbf{D}_{1} Diameter of Cylinder 1 (Meter)
- E_{c} Modulus of Elasticity of Concrete (Megapascal)
- $\mathbf{E}_{\mathbf{c m d}}$ Elastic Modulus of Concrete for Mix Design (Megapascal)
- $\mathbf{f}_{3 \text { ptr }}$ Modulus of Rupture of Concrete Threepoint bending (Megapascal)
- $\mathbf{f}_{4 \text { ptr }}$ Modulus of Rupture of Concrete Fourpoint bending (Megapascal)
- $\mathbf{f}^{\mathbf{c}}$ Specified 28-Day Compressive Strength of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{c k}}$ Characteristic Compressive Strength (Megapascal)
- $\mathbf{f}_{\mathbf{c k}}$ Target Average Compressive Strength (Megapascal)
- F_{f} Load at Fracture Point (Newton)
- $\mathbf{f r}_{\mathbf{r}}$ Tensile Strength of Concrete (Megapascal)
- GS Gel Space Ratio
- L Length of Section (Millimeter)
- L_{c} Length of Cylinder (Meter)
- SG Specific Gravity of Material
- TAverage Section Thickness (Millimeter)
- $\mathbf{V a}_{\mathbf{a}}$ Absolute Volume (Cubic Meter)
- $\mathbf{V}_{\text {cah }}$ Absolute Volume of Dry Cement actually Hydrated (Gram per Milliliter)
- $\mathbf{V}_{\mathbf{c p}}$ Volume of Capillary Pores (Milliliter)
- $\mathbf{V}_{\mathbf{h c}}$ Volume of Hydrated Cement (Milliliter)
- $\mathbf{V}_{\text {wcp }}$ Volume of Water Filled Capillary Pores (Milliliter)
- Vec Volume of Empty Capillary Pores (Milliliter)
- Vp Volume of Solid Products of Hydration (Cubic Millimeter)
- $\mathbf{w}_{\mathbf{c}}$ Weight of Cementitious Materials (Kilogram)
- $\mathbf{W}_{\mathbf{L}}$ Weight of Material (Kilogram)
- $\mathbf{W}_{\text {load }}$ Maximum Load Applied (Kilonewton)
- $\mathbf{w}_{\mathbf{m}}$ Weight of Mixing Water (Kilogram)
- Wo Volume of Mixing Water (Milliliter)
- $\boldsymbol{P}_{\text {water }}$ Water Density (Kilogram per Cubic Meter)
- $\boldsymbol{\sigma}$ Standard Deviation of Distribution
- \quad osp Splitting Tensile Strength of Concrete (Newton per Square Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion $\boxed{\Omega}$

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$, Milliliter (mL), Cubic Millimeter (mm^{3})
Volume Unit Conversion
- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Newton (N), Kilonewton (kN)

Force Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³), Gram per Milliliter (g / mL)
Density Unit Conversion
- Measurement: Stress in Megapascal (MPa), Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)
Stress Unit Conversion

Check other formula lists

- Beams, Columns and Other Members Design Methods Formulas
- Deflection Computations, Column Moments and Torsion Formulas
- Frames and Flat Plate Formulas
- Mix Design, Modulus of Elasticity and Tensille Strength of Concrete Formulas
- Working Stress Design Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

