

Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas

Mix Design, Modulus of Elasticity and Tensile Strength of Concrete 🗗

Job Mix Concrete Volume 🗗

1) Absolute Volume of Component

$$V_{
m a} = rac{W_{
m L}}{{
m SG} \cdot
ho_{
m water}}$$

Open Calculator

$$oxed{0.375 \mathrm{m}^{_3} = rac{900 \mathrm{kg}}{2.4 \cdot 1000.001 \mathrm{kg/m}^{_3}}}$$

2) Gel-Space Ratio for Complete Hydration

$$ext{GS} = rac{0.657 \cdot ext{C}}{(0.319 \cdot ext{C}) + ext{Wo}}$$

Open Calculator 🖸

$$ext{ex} 1.568019 = rac{0.657 \cdot 10 ext{kg}}{(0.319 \cdot 10 ext{kg}) + 1000 ext{mL}}$$

3) Specific Gravity of Material given its Absolute Volume

Open Calculator

 $m ex = rac{900 kg}{0.375 m^3 \cdot 1000.001 kg/m^3}$

4) Target Mean Strength for Mix Design

fx $f'_{
m ck} = f_{
m ck} + (1.65 \cdot \sigma)$

Open Calculator

 $= 20.01001 \text{MPa} = 20.01 \text{MPa} + (1.65 \cdot 4)$

5) Volume of Empty Capillary Pores

 $\left. ext{Vec} = \left(ext{V}_{ ext{cp}} - ext{V}_{ ext{wcp}}
ight)
ight|$

Open Calculator 🖒

 $oxed{ex} 3.5 \mathrm{mL} = (8 \mathrm{mL} - 4.5 \mathrm{mL})$

6) Volume of Products of Hydration Per Unit of Dry Cement

 $oxed{ex} 22.2222 \mathrm{mm}^{_3} = \left(rac{70 \mathrm{mL}}{3.15 \mathrm{g/mL}}
ight)$

7) Water Cement Ratio

Open Calculator 🚰

 $\boxed{0.45 = \frac{9 \mathrm{kg}}{20 \mathrm{kg}}}$

8) Weight of Cementitious Materials in Concrete Batch

Open Calculator

 $20 \text{kg} = \frac{9 \text{kg}}{0.45}$

9) Weight of Material given its Absolute Volume

 $\mathbf{w}_{\mathrm{L}} = V_{\mathrm{a}} \cdot \mathrm{SG} \cdot
ho_{\mathrm{water}}$

Open Calculator

 $m ex = 900.0009 kg = 0.375 m^3 \cdot 2.4 \cdot 1000.001 kg/m^3$

10) Weight of Mixing Water in Batch

Open Calculator

Modulus of Elasticity of Concrete

11) Modulus of Elasticity of Concrete

 $\mathbf{f}_{\mathbf{k}} \mathbf{E}_{\mathrm{cmd}} = 5000 \cdot \left(\mathbf{f}_{\mathrm{ck}}
ight)^{0.5}$

Open Calculator [7

 $\mathbf{ex} \ 22.36627 \mathrm{MPa} = 5000 \cdot (20.01 \mathrm{MPa})^{0.5}$

ACI Code

12) Modulus of Elasticity of Concrete in SI Units

Open Calculator 2

Open Calculator

 $\mathbf{E}_{\mathrm{c}} = 0.043 \cdot \mathrm{w}_{\mathrm{c}}^{1.5} \cdot \sqrt{\mathrm{f'}_{\mathrm{c}}}$ $\mathbf{ex} \left[0.027196 \mathrm{MPa} = 0.043 \cdot \left(20 \mathrm{kg} \right)^{1.5} \cdot \sqrt{50 \mathrm{MPa}} \right]$

13) Modulus of Elasticity of Concrete in USCS Units

fx $m E_c = 33 \cdot w_c^{1.5} \cdot \sqrt{f'_c}$

 $= 20.87103 \mathrm{MPa} = 33 \cdot (20 \mathrm{kg})^{1.5} \cdot \sqrt{50 \mathrm{MPa}}$

Normal-Weight, Normal-Density Concrete

14) Modulus of Elasticity for Normal Weight Concrete in UCSC Units

Open Calculator

 $403.0509 \text{MPa} = 57000 \cdot \sqrt{50 \text{MPa}}$

15) Modulus of Elasticity of Normal Weight and Density Concrete in SI Units

fx $m [E_c = 4700 \cdot \sqrt{f'_c}]$

Open Calculator

 $= 33.23402 \text{MPa} = 4700 \cdot \sqrt{50 \text{MPa}}$

Modulus of Rupture

16) Modulus of Rupture of Rectangular Sample in Four-Point Bending

 $\mathbf{f}_{4 ext{ptr}} = rac{\mathrm{F_f \cdot L}}{\mathrm{B \cdot (T^2)}} igg|$

Open Calculator 🗗

17) Modulus of Rupture of Rectangular Sample in Three-Point Bending

 $\mathbf{f}_{3 ext{ptr}} = rac{3\cdot F_{ ext{f}}\cdot L}{2\cdot B\cdot \left(ext{T}^2
ight)}$

Tensile Strength of Concrete 🗗

18) Maximum Load Applied during Splitting Tensile Strength of Concrete

Open Calculator 🚰

 $= \frac{3.769911 \text{kN}}{2} = \frac{40 \text{N/m}^2 \cdot \pi \cdot 5 \text{m} \cdot 12 \text{m}}{2}$

19) Splitting Tensile Strength of Concrete

Open Calculator 🗗

 $extbf{ex} 38.19719 ext{N}/ ext{m}^2 = rac{2\cdot 3.6 ext{kN}}{\pi\cdot 5 ext{m}\cdot 12 ext{m}}$

fx $m f_r = 7.5 \cdot \sqrt{f'_c}$

Open Calculator 🗗

21) Tensile Strength of Normal Weight and Density Concrete in SI Units

20) Tensile Strength of Concrete in Combined Stress Design

fx $m f_r = 0.7 \cdot \sqrt{f'_c}$

 $0.00495 \text{MPa} = 0.7 \cdot \sqrt{50 \text{MPa}}$

Variables Used

- B Width of Section (Millimeter)
- C Mass Of Cement (Kilogram)
- CW Water Cement Ratio
- D₁ Diameter of Cylinder 1 (Meter)
- E_C Modulus of Elasticity of Concrete (Megapascal)
- E_{cmd} Elastic Modulus of Concrete for Mix Design (Megapascal)
- f_{3ptr} Modulus of Rupture of Concrete Threepoint bending (Megapascal)
- f_{4ptr} Modulus of Rupture of Concrete Fourpoint bending (Megapascal)
- f'c Specified 28-Day Compressive Strength of Concrete (Megapascal)
- fck Characteristic Compressive Strength (Megapascal)
- f'ck Target Average Compressive Strength (Megapascal)
- **F**_f Load at Fracture Point (Newton)
- f_r Tensile Strength of Concrete (Megapascal)
- GS Gel Space Ratio
- L Length of Section (Millimeter)
- **L**_c Length of Cylinder (Meter)
- SG Specific Gravity of Material
- T Average Section Thickness (Millimeter)
- V_a Absolute Volume (Cubic Meter)
- V_{cah} Absolute Volume of Dry Cement actually Hydrated (Gram per Milliliter)
- V_{cp} Volume of Capillary Pores (Milliliter)

- V_{hc} Volume of Hydrated Cement (Milliliter)
- V_{wcp} Volume of Water Filled Capillary Pores (Milliliter)
- **Vec** Volume of Empty Capillary Pores (*Milliliter*)
- **Vp** Volume of Solid Products of Hydration (Cubic Millimeter)
- Wc Weight of Cementitious Materials (Kilogram)
- W_I Weight of Material (Kilogram)
- W_{load} Maximum Load Applied (Kilonewton)
- W_m Weight of Mixing Water (Kilogram)
- Wo Volume of Mixing Water (Milliliter)
- **P**water Water Density (Kilogram per Cubic Meter)
- σ Standard Deviation of Distribution
- σsp Splitting Tensile Strength of Concrete (Newton per Square Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Millimeter (mm), Meter (m)

 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Volume in Cubic Meter (m³), Milliliter (mL), Cubic Millimeter (mm³)
 - Volume Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Newton (N), Kilonewton (kN)
 Force Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³), Gram per Milliliter (g/mL)
 Density Unit Conversion
- Measurement: Stress in Megapascal (MPa), Newton per Square Meter (N/m²)
 - Stress Unit Conversion

Check other formula lists

- Beams, Columns and Other Members Design Methods
 Formulas
- Deflection Computations, Column
 Moments and Torsion
 Formulas
- Frames and Flat Plate
 Formulas
- Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas
 - Working Stress Design Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/18/2023 | 9:45:54 PM UTC

Please leave your feedback here...

