Important Formulas in Radiation Heat Transfer

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 33 Important Formulas in Radiation Heat Transfer

Important Formulas in Radiation Heat Transfer \mathbb{A}

1) Absorptivity given Reflectivity and Transmissivity
$f \mathbf{x} \alpha=1-\rho-\tau$
Open Calculator
ex $0.65=1-0.10-0.25$
2) Area of Surface 1 given Area 2 and Radiation Shape Factor for Both Surfaces
$f \mathbf{x} A_{1}=A_{2} \cdot\left(\frac{F_{21}}{F_{12}}\right)$
Open Calculator
$\mathrm{ex} 34.74576 \mathrm{~m}^{2}=50 \mathrm{~m}^{2} \cdot\left(\frac{0.41}{0.59}\right)$
3) Area of Surface 2 given Area 1 and Radiation Shape Factor for Both Surfaces
$f \mathrm{f} \mathrm{A}_{2}=\mathrm{A}_{1} \cdot\left(\frac{\mathrm{~F}_{12}}{\mathrm{~F}_{21}}\right)$
ex $49.99171 \mathrm{~m}^{2}=34.74 \mathrm{~m}^{2} \cdot\left(\frac{0.59}{0.41}\right)$
4) Emissive Power of Blackbody
$f \times \mathrm{E}_{\mathrm{b}}=\left[\right.$ Stefan-BoltZ] $\cdot\left(\mathrm{T}^{4}\right)$
ex $324.2963 \mathrm{~W} / \mathrm{m}^{2}=[$ Stefan-BoltZ $] \cdot\left((275 \mathrm{~K})^{4}\right)$
5) Emissive Power of Non Blackbody given Emissivity
$f \mathrm{x} E=\varepsilon \cdot \mathrm{E}_{\mathrm{b}}$
Open Calculator
ex $308.0755 \mathrm{~W} / \mathrm{m}^{2}=0.95 \cdot 324.29 \mathrm{~W} / \mathrm{m}^{2}$
6) Emissivity of Body
$f \mathrm{x} \varepsilon=\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{b}}}$
$\mathrm{ex} 0.949983=\frac{308.07 \mathrm{~W} / \mathrm{m}^{2}}{324.29 \mathrm{~W} / \mathrm{m}^{2}}$
7) Energy of each Quanta
$f \mathrm{f} \mathrm{E}_{\mathrm{q}}=[\mathrm{hP}] \cdot v$
Open Calculator
ex $5 \mathrm{E}^{\wedge}-19 \mathrm{~J}=[\mathrm{hP}] \cdot 7.5 \mathrm{E}^{\wedge} 14 \mathrm{~Hz}$
8) Frequency given Speed of Light and Wavelength
$f \mathbf{f} v=\frac{[\mathrm{c}]}{\lambda}$
ex $7.5 \mathrm{E}^{\wedge} 14 \mathrm{~Hz}=\frac{[\mathrm{c}]}{400 \mathrm{~nm}}$

9) Heat Transfer between Concentric Spheres 3

$$
\mathrm{fx} \mathrm{q}=\frac{\mathrm{A}_{1} \cdot[\text { Stefan-BoltZ }] \cdot\left(\left(\mathrm{T}_{1}^{4}\right)-\left(\mathrm{T}_{2}^{4}\right)\right)}{\left(\frac{1}{\varepsilon_{1}}\right)+\left(\left(\left(\frac{1}{\varepsilon_{2}}\right)-1\right) \cdot\left(\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}\right)\right)}
$$

$$
\frac{34.74 \mathrm{~m}^{2} \cdot[\text { Stefan-BoltZ }] \cdot\left(\left((202 \mathrm{~K})^{4}\right)-\left((151 \mathrm{~K})^{4}\right)\right)}{\left(\frac{1}{0.4}\right)+\left(\left(\left(\frac{1}{0.3}\right)-1\right) \cdot\left(\left(\frac{10 \mathrm{~m}}{20 \mathrm{~m}}\right)^{2}\right)\right)}
$$

10) Heat Transfer between Small Convex Object in Large Enclosure $\boxed{\Omega}$
$\mathrm{fx} q=\mathrm{A}_{1} \cdot \varepsilon_{1} \cdot[$ Stefan-BoltZ $] \cdot\left(\left(\mathrm{T}_{1}^{4}\right)-\left(\mathrm{T}_{2}^{4}\right)\right)$
Open Calculator
ex
$902.2712 \mathrm{~W}=34.74 \mathrm{~m}^{2} \cdot 0.4 \cdot[$ Stefan-BoltZ $] \cdot\left(\left((202 \mathrm{~K})^{4}\right)-\left((151 \mathrm{~K})^{4}\right)\right)$
11) Heat Transfer between Two Infinite Parallel Planes given Temp and Emissivity of Both Surfaces

$$
f x q=\frac{A \cdot[\text { Stefan-BoltZ }] \cdot\left(\left(T_{1}^{4}\right)-\left(T_{2}^{4}\right)\right)}{\left(\frac{1}{\varepsilon_{1}}\right)+\left(\frac{1}{\varepsilon_{2}}\right)-1}
$$

Open Calculator

$$
50.3 \mathrm{~m}^{2} \cdot[\text { Stefan-BoltZ }] \cdot\left(\left((202 \mathrm{~K})^{4}\right)-\left((151 \mathrm{~K})^{4}\right)\right)
$$

$$
\left(\frac{1}{0.4}\right)+\left(\frac{1}{0.3}\right)-1
$$

12) Heat Transfer between Two Long Concentric Cylinder given Temp, Emissivity and Area of Both Surfaces
$f \mathbf{f x}=\frac{\left([\text { Stefan-BoltZ }] \cdot A_{1} \cdot\left(\left(\mathrm{~T}_{1}^{4}\right)-\left(\mathrm{T}_{2}^{4}\right)\right)\right)}{\left(\frac{1}{\varepsilon_{1}}\right)+\left(\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right) \cdot\left(\left(\frac{1}{\varepsilon_{2}}\right)-1\right)\right)}$

$$
547.3353 \mathrm{~W}=\frac{\left([\text { Stefan-BoltZ }] \cdot 34.74 \mathrm{~m}^{2} \cdot\left(\left((202 \mathrm{~K})^{4}\right)-\left((151 \mathrm{~K})^{4}\right)\right)\right)}{\left(\frac{1}{0.4}\right)+\left(\left(\frac{34.74 \mathrm{~m}^{2}}{50 \mathrm{~m}^{2}}\right) \cdot\left(\left(\frac{1}{0.3}\right)-1\right)\right)}
$$

13) Mass of Particle Given Frequency and Speed of Light
$\mathrm{fx} \mathrm{m}=[\mathrm{hP}] \cdot \frac{v}{[\mathrm{c}]^{2}}$
ex $5.5 \mathrm{E}^{\wedge}-36 \mathrm{~kg}=[\mathrm{hP}] \cdot \frac{7.5 \mathrm{E}^{\wedge} 14 \mathrm{~Hz}}{[\mathrm{c}]^{2}}$
14) Maximum Wavelength at given Temperature
$\mathrm{fx} \lambda_{\mathrm{Max}}=\frac{2897.6}{\mathrm{~T}_{\mathrm{R}}}$
ex $499586.2 \mu \mathrm{~m}=\frac{2897.6}{5800 \mathrm{~K}}$
15) Net Energy Leaving given Radiosity and Irradiation
$f \times q=A \cdot(J-G)$
Open Calculator ©
ex $15452.16 \mathrm{~W}=50.3 \mathrm{~m}^{2} \cdot\left(308 \mathrm{~W} / \mathrm{m}^{2}-0.80 \mathrm{~W} / \mathrm{m}^{2}\right)$
16) Net Heat Exchange between Two Surfaces given Radiosity for Both Surface

$$
f \mathbf{f} \mathrm{q}_{1-2}=\frac{\mathrm{J}_{1}-\mathrm{J}_{2}}{\frac{1}{\mathrm{~A}_{1} \cdot \mathrm{~F}_{12}}}
$$

$\operatorname{ex} 245.9592 \mathrm{~W}=\frac{61 \mathrm{~W} / \mathrm{m}^{2}-49 \mathrm{~W} / \mathrm{m}^{2}}{\frac{1}{34.74 \mathrm{~m}^{2} \cdot 0.59}}$
17) Net Heat Exchange given Area 1 and Shape Factor 12
$f \times Q_{1-2}=A_{1} \cdot F_{12} \cdot\left(\mathrm{E}_{\mathrm{b} 1}-\mathrm{E}_{\mathrm{b} 2}\right)$
Open Calculator
ex $3176.973 \mathrm{~W}=34.74 \mathrm{~m}^{2} \cdot 0.59 \cdot\left(680 \mathrm{~W} / \mathrm{m}^{2}-525 \mathrm{~W} / \mathrm{m}^{2}\right)$
18) Net Heat Exchange given Area 2 and Shape Factor 21
$f x Q_{1-2}=\mathrm{A}_{2} \cdot \mathrm{~F}_{21} \cdot\left(\mathrm{E}_{\mathrm{b} 1}-\mathrm{E}_{\mathrm{b} 2}\right)$
Open Calculator
ex $3177.5 \mathrm{~W}=50 \mathrm{~m}^{2} \cdot 0.41 \cdot\left(680 \mathrm{~W} / \mathrm{m}^{2}-525 \mathrm{~W} / \mathrm{m}^{2}\right)$
19) Net Heat Transfer from Surface given Emissivity, Radiosity and Emissive Power
$f \mathbf{x}=\left(\frac{(\varepsilon \cdot A) \cdot\left(E_{b}-J\right)}{1-\varepsilon}\right)$
Open Calculator
ex $15568.35 \mathrm{~W}=\left(\frac{\left(0.95 \cdot 50.3 \mathrm{~m}^{2}\right) \cdot\left(324.29 \mathrm{~W} / \mathrm{m}^{2}-308 \mathrm{~W} / \mathrm{m}^{2}\right)}{1-0.95}\right)$
20) Radiation Heat Transfer between Plane 1 and Shield given Temperature and Emissivity of Both Surfaces
$f \mathbf{f x}=\mathrm{A} \cdot[$ Stefan-BoltZ $] \cdot \frac{\left(\mathrm{T}_{\mathrm{P} 1}^{4}\right)-\left(\mathrm{T}_{3}^{4}\right)}{\left(\frac{1}{\varepsilon_{1}}\right)+\left(\frac{1}{\varepsilon_{3}}\right)-1}$
Open Calculator
ex $699.4575 \mathrm{~W}=50.3 \mathrm{~m}^{2} \cdot[$ Stefan-BoltZ $] \cdot \frac{\left((452 \mathrm{~K})^{4}\right)-\left((450 \mathrm{~K})^{4}\right)}{\left(\frac{1}{0.4}\right)+\left(\frac{1}{0.67}\right)-1}$
21) Radiation Heat Transfer between Plane 2 and Radiation Shield given Temperature and Emissivity
$f \mathrm{fx}=\mathrm{A} \cdot[$ Stefan-BoltZ $] \cdot \frac{\left(\mathrm{T}_{3}^{4}\right)-\left(\mathrm{T}_{\mathrm{P} 2}^{4}\right)}{\left(\frac{1}{\varepsilon_{3}}\right)+\left(\frac{1}{\varepsilon_{2}}\right)-1}$
ex $1336.2 \mathrm{~W}=50.3 \mathrm{~m}^{2} \cdot[$ Stefan-BoltZ $] \cdot \frac{\left((450 \mathrm{~K})^{4}\right)-\left((445 \mathrm{~K})^{4}\right)}{\left(\frac{1}{0.67}\right)+\left(\frac{1}{0.3}\right)-1}$
22) Radiation Temperature given Maximum Wavelength
$\mathrm{fx}_{\mathrm{R}} \mathrm{T}_{\mathrm{R}}=\frac{2897.6}{\lambda_{\mathrm{Max}}}$
Open Calculator
ex $5800 \mathrm{~K}=\frac{2897.6}{499586.2 \mu \mathrm{~m}}$
23) Radiosity given Emissive Power and Irradiation
$f \mathrm{fx}=\left(\varepsilon \cdot \mathrm{E}_{\mathrm{b}}\right)+(\rho \cdot \mathrm{G})$
Open Calculator
ex $308.1555 \mathrm{~W} / \mathrm{m}^{2}=\left(0.95 \cdot 324.29 \mathrm{~W} / \mathrm{m}^{2}\right)+\left(0.10 \cdot 0.80 \mathrm{~W} / \mathrm{m}^{2}\right)$
24) Reflected Radiation given Absorptivity and Transmissivity
$f \mathrm{f} \rho=1-\alpha-\tau$
ex $0.1=1-0.65-0.25$
25) Reflectivity given Absorptivity for Blackbody
$\mathrm{fx} \rho=1-\alpha$
Open Calculator
ex $0.35=1-0.65$
26) Reflectivity given Emissivity for Blackbody
$\mathrm{fx} \rho=1-\varepsilon$
Open Calculator
ex $0.05=1-0.95$
27) Resistance in Radiation Heat Transfer when No Shield is Present and Equal Emissivities
$f \mathrm{f} R=\left(\frac{2}{\varepsilon}\right)-1$
Open Calculator
ex $1.105263=\left(\frac{2}{0.95}\right)-1$
28) Shape Factor 12 given Area of Both Surface and Shape Factor $21 \boxed{\Omega}$
$f \times \mathrm{F}_{12}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right) \cdot \mathrm{F}_{21}$
Open Calculator
ex $0.590098=\left(\frac{50 \mathrm{~m}^{2}}{34.74 \mathrm{~m}^{2}}\right) \cdot 0.41$
29) Shape Factor 21 given Area of Both Surface and Shape Factor 12
$f \times \mathrm{F}_{21}=\mathrm{F}_{12} \cdot\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)$
ex $0.409932=0.59 \cdot\left(\frac{34.74 \mathrm{~m}^{2}}{50 \mathrm{~m}^{2}}\right)$
30) Temperature of Radiation Shield Placed between Two Parallel Infinite Planes with Equal Emissivities
$f_{\mathrm{x}} \mathrm{T}_{3}=\left(0.5 \cdot\left(\left(\mathrm{~T}_{\mathrm{P} 1}^{4}\right)+\left(\mathrm{T}_{\mathrm{P} 2}^{4}\right)\right)\right)^{\frac{1}{4}}$
Open Calculator
$\mathrm{ex} 448.541 \mathrm{~K}=\left(0.5 \cdot\left(\left((452 \mathrm{~K})^{4}\right)+\left((445 \mathrm{~K})^{4}\right)\right)\right)^{\frac{1}{4}}$
31) Total Resistance in Radiation Heat Transfer given Emissivity and Number of Shields
$f_{x} R=(n+1) \cdot\left(\left(\frac{2}{\varepsilon}\right)-1\right)$
ex $3.315789=(2+1) \cdot\left(\left(\frac{2}{0.95}\right)-1\right)$
32) Transmissivity Given Reflectivity and Absorptivity
$\mathrm{fx}_{\mathrm{x}} \tau=1-\alpha-\rho$
Open Calculator
ex $0.25=1-0.65-0.10$
33) Wavelength Given Speed of Light and Frequency

Variables Used

- A Area (Square Meter)
- \mathbf{A}_{1} Surface Area of Body 1 (Square Meter)
- $\mathbf{A}_{\mathbf{2}}$ Surface Area of Body 2 (Square Meter)
- E Emissive Power of Non Blackbody (Watt per Square Meter)
- $\mathbf{E}_{\mathbf{b}}$ Emissive Power of Blackbody (Watt per Square Meter)
- $\mathbf{E}_{\mathbf{b} 1}$ Emissive Power of 1st Blackbody (Watt per Square Meter)
- $\mathbf{E}_{\mathrm{b} 2}$ Emissive Power of 2nd Blackbody (Watt per Square Meter)
- $\mathbf{E}_{\mathbf{q}}$ Energy of Each Quanta (Joule)
- F12 Radiation Shape Factor 12
- F_{21} Radiation Shape Factor 21
- G Irradiation (Watt per Square Meter)
- J Radiosity (Watt per Square Meter)
- J_{1} Radiosity of 1 st Body (Watt per Square Meter)
- J_{2} Radiosity of 2nd Body (Watt per Square Meter)
- m Mass of Particle (Kilogram)
- n Number of Shields
- q Heat Transfer (Watt)
- $\mathbf{q 1 - 2}_{1-2}$ Radiation Heat Transfer (Watt)
- \mathbf{Q}_{1-2} Net Heat Transfer (Watt)
- R Resistance
- $\mathbf{r}_{\mathbf{1}}$ Radius of Smaller Sphere (Meter)
- $\mathbf{r}_{\mathbf{2}}$ Radius of Larger Sphere (Meter)
- T Temperature of Blackbody (Kelvin)
- \mathbf{T}_{1} Temperature of Surface 1 (Kelvin)
- $\mathbf{T}_{\mathbf{2}}$ Temperature of Surface 2 (Kelvin)
- \mathbf{T}_{3} Temperature of Radiation Shield (Kelvin)
- $\mathbf{T}_{\mathbf{P} 1}$ Temperature of Plane 1 (Kelvin)
- $\mathbf{T}_{\mathbf{P} 2}$ Temperature of Plane 2 (Kelvin)
- $\mathbf{T}_{\mathbf{R}}$ Radiation Temperature (Kelvin)
- α Absorptivity
- ε Emissivity
- ε_{1} Emissivity of Body 1
- ε_{2} Emissivity of Body 2
- ε_{3} Emissivity of Radiation Shield
- $\boldsymbol{\lambda}$ Wavelength (Nanometer)
- $\lambda_{\text {Max }}$ Maximum Wavelength (Micrometer)
- v Frequency (Hertz)
- ρ Reflectivity
- τ Transmissivity

Constants, Functions, Measurements used

- Constant: [c], 299792458.0 Meter/Second

Light speed in vacuum

- Constant: [hP], 6.626070040E-34 Kilogram Meter² / Second Planck constant
- Constant: [Stefan-BoltZ], 5.670367E-8 Kilogram Second^-3 Kelvin^-4 Stefan-Boltzmann Constant
- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Energy in Joule (J)

Energy Unit Conversion $\boxed{\boxed{Z}}$

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Wavelength in Nanometer (nm), Micrometer ($\mu \mathrm{m}$) Wavelength Unit Conversion
- Measurement: Heat Flux Density in Watt per Square Meter (W/m²) Heat Flux Density Unit Conversion

Check other formula lists

- Gas Radiation Formulas
- Important Formulas in Gas Radiation, Radiation Exchange with Specular Surfaces \& more Special Cases
- Important Formulas in Radiation Heat Transfer
- Radiation Exchange with Specular Surfaces Formulas
- Radiation Formulas
- Radiation Heat Transfer Formulas
- Radiation System consisting of Transmitting and Absorbing Medium between Two Planes. Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

