

Lateral Pressure for Cohesive and Non Cohesive Soil Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 25 Lateral Pressure for Cohesive and Non Cohesive Soil Formulas

Lateral Pressure for Cohesive and Non Cohesive Soil 🕑

1) Coefficient of Active Pressure given Angle of Internal Friction of Soil

$$\mathbf{K}\mathbf{K}_{\mathrm{A}} = \left(\mathrm{tan}\left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{\varphi}{2} \right) \right) \right)^2$$

$$\textbf{ex} \ 0.163237 = \left(\tan \left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{46^{\circ}}{2} \right) \right) \right)^2$$

2) Coefficient of Active Pressure given Total Thrust from Soil for Level Surface 🗹

$$\begin{aligned} & \mathbf{K}_{A} = \frac{2 \cdot P}{\gamma \cdot (h_{w})^{2}} \end{aligned} \end{aligned} \tag{Dpen Calculator Constraints} \\ & \mathbf{k}_{A} = \frac{2 \cdot P}{\gamma \cdot (h_{w})^{2}} \end{aligned}$$

3) Coefficient of Passive Pressure given Angle of Internal Friction of Soil

$$\mathbf{\widehat{K}} \mathbf{K}_{\mathrm{P}} = \left(\tan\left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{\varphi}{2} \right) \right) \right)^2$$

$$\mathbf{ex} \quad 0.163237 = \left(\tan\left(\left(45 \cdot \frac{\pi}{180} \right) - \left(\frac{46^{\circ}}{2} \right) \right) \right)^2$$

4) Coefficient of Passive Pressure given Thrust of Soil are Free to Move only Small Amount

$$\begin{split} & \overbrace{\mathbf{K}_{\mathrm{P}}}{} = \frac{2 \cdot \mathrm{P}}{\gamma \cdot \left(\mathrm{h_{w}}\right)^{2}} \end{split} \end{split} \tag{Open Calculator } \textcircled{S} \\ & \overbrace{0.11562}{} = \frac{2 \cdot 10 \mathrm{kN/m}}{18 \mathrm{kN/m^{3}} \cdot (3.1 \mathrm{m})^{2}} \end{split}$$

Open Calculator

5) Coefficient of Passive Pressure given Thrust of Soil that are Completely Restrained 🗹

fx
$$K_P = rac{2 \cdot P}{\gamma \cdot (h_w)^2}$$

ex $0.11562 = rac{2 \cdot 10 kN/m}{18 kN/m^3 \cdot (3.1m)^2}$

6) Cohesion of soil given Total Thrust from Soil that are Free to Move 🗹

$$\begin{array}{l} \hline \textbf{K} \end{array} \begin{array}{l} \textbf{C} = \left(0.25 \cdot \gamma \cdot \textbf{h}_{w} \cdot \sqrt{\textbf{K}_{A}}\right) - \left(0.5 \cdot \frac{\textbf{P}}{\textbf{h}_{w}} \cdot \sqrt{\textbf{K}_{A}}\right) \end{array} \end{array} \begin{array}{l} \hline \textbf{Open Calculator} \end{array}$$

ust from Soil with Small

$$\begin{aligned} & \mathbf{fx} \mathbf{C} = \left(\left(0.25 \cdot \mathbf{\gamma} \cdot \mathbf{h_w} \right) - \left(0.5 \cdot \frac{\mathbf{P}}{\mathbf{h_w}} \right) \right) \end{aligned} \\ & \mathbf{ex} \mathbf{12.3371 kPa} = \left(\left(0.25 \cdot 18 \mathrm{kN/m^3} \cdot 3.1 \mathrm{m} \right) - \left(0.5 \cdot \frac{10 \mathrm{kN/m}}{3.1 \mathrm{m}} \right) \right) \end{aligned}$$

8) Height of Wall given Thrust of Soil that are Completely Restrained and Surface is Level 💪

$$\label{eq:hw} \textbf{h}_w = \sqrt{\frac{2\cdot P}{\gamma\cdot K_P}}$$
 Open Calculator (*)
$$\textbf{ex} \ 2.635231 m = \sqrt{\frac{2\cdot 10 kN/m}{18 kN/m^3 \cdot 0.16}}$$

9) Height of Wall given Total Thrust of Soil that are Free to Move only Small Amount 🕑

$$f_{\rm X} h_{\rm w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot K_{\rm P}}}$$

$$e_{\rm X} 2.635231 m = \sqrt{\frac{2 \cdot 10 k N/m}{18 k N/m^3 \cdot 0.16}}$$

Open Calculator

Open Calculator

10) Total Height of Wall given Total Thrust from Soil for Level Surface behind Wall 🗹

fx
$$\mathbf{h}_{\mathrm{w}} = \sqrt{rac{2 \cdot \mathrm{P}}{\gamma \cdot \mathrm{K}_{\mathrm{A}}}}$$

ex
$$2.721655m = \sqrt{\frac{2 \cdot 10 kN/m}{18 kN/m^3 \cdot 0.15}}$$

11) Total Height of Wall given Total Thrust from Soil that are Completely Restrained 🕑

$$\mathbf{\hat{h}}_{w} = \sqrt{\frac{2 \cdot P}{\gamma \cdot \cos(i) \cdot \left(\frac{\cos(i) + \sqrt{(\cos(i))^{2} - (\cos(\phi))^{2}}}{\cos(i) - \sqrt{(\cos(i))^{2} - (\cos(\phi))^{2}}}\right)}}$$

$$\mathbf{ex} \ 0.56886m = \sqrt{\frac{2 \cdot 10 \text{kN/m}}{18 \text{kN/m}^3 \cdot \cos(30\degree) \cdot \left(\frac{\cos(30\degree) + \sqrt{(\cos(30\degree))^2 - (\cos(46\degree))^2}}{\cos(30\degree) - \sqrt{(\cos(30\degree))^2 - (\cos(46\degree))^2}}\right)} }$$

12) Total Height of Wall given Total Thrust from Soil that are Free to move 🕝

$$\mathbf{\hat{h}_w} = \sqrt{ rac{2 \cdot P}{\gamma \cdot \cos(i) \cdot \left(rac{\cos(i) - \sqrt{(\cos(i))^2 - (\cos(\phi))^2}}{\cos(i) + \sqrt{(\cos(i))^2 - (\cos(\phi))^2}}
ight)} }$$

$$\mathbf{ex} \ 2.255387 \mathrm{m} = \sqrt{\frac{2 \cdot 10 \mathrm{kN/m}}{18 \mathrm{kN/m^3 \cdot \cos(30^\circ) \cdot \left(\frac{\cos(30^\circ) - \sqrt{(\cos(30^\circ))^2 - (\cos(46^\circ))^2}}{\cos(30^\circ) + \sqrt{(\cos(30^\circ))^2 - (\cos(46^\circ))^2}}\right)} }$$

Open Calculator 🕑

Open Calculator 🕑

Open Calculator 🛃

13) Total Thrust from Soil that are Completely Restrained

$$\mathbf{fx} \left[\mathbf{P} = \left(0.5 \cdot \gamma \cdot (\mathbf{h}_w)^2 \cdot \cos(i) \right) \cdot \left(\frac{\cos(i) + \sqrt{\left(\cos(i)\right)^2 - \left(\cos(\phi)\right)^2}}{\cos(i) - \sqrt{\left(\cos(i)\right)^2 - \left(\cos(\phi)\right)^2}} \right) \right]$$

Open Calculator 🕑

5/10

$$296.9695 \mathrm{kN/m} = \left(0.5 \cdot 18 \mathrm{kN/m^3} \cdot (3.1 \mathrm{m})^2 \cdot \cos(30\,^\circ)
ight) \cdot \left(rac{\cos(30\,^\circ) + \sqrt{(\cos(30\,^\circ))^2 - (\cos(46\,^\circ))^2}}{\cos(30\,^\circ) - \sqrt{(\cos(30\,^\circ))^2 - (\cos(46\,^\circ))^2}}
ight)$$

14) Total Thrust from Soil that are Completely Restrained and Surface is Level 🕑

15) Total Thrust from Soil that are Free to Move 🕑

$$\mathbf{fx} \boxed{\mathbf{P} = \left(0.5 \cdot \gamma \cdot (h_w)^2 \cdot \cos(i)\right) \cdot \left(\frac{\cos(i) - \sqrt{\left(\cos(i)\right)^2 - \left(\cos(\phi)\right)^2}}{\cos(i) + \sqrt{\left(\cos(i)\right)^2 - \left(\cos(\phi)\right)^2}}\right)}$$

Open Calculator 🕑

$$18.89214 \text{kN/m} = \left(0.5 \cdot 18 \text{kN/m}^3 \cdot (3.1 \text{m})^2 \cdot \cos(30^\circ)\right) \cdot \left(\frac{\cos(30^\circ) - \sqrt{(\cos(30^\circ))^2 - (\cos(46^\circ))^2}}{\cos(30^\circ) + \sqrt{(\cos(30^\circ))^2 - (\cos(46^\circ))^2}}\right)$$

16) Total Thrust from Soil that are Free to Move only Small Amount

Open Calculator 🕑

ex
$$13.8384 \mathrm{kN/m} = \left(0.5 \cdot 18 \mathrm{kN/m^3} \cdot (3.1 \mathrm{m})^2 \cdot 0.16\right)$$

fx $\mathbf{P} = \left(0.5 \cdot \gamma \cdot (\mathbf{h}_{\mathrm{w}})^2 \cdot \mathbf{K}_{\mathrm{P}}
ight)^{T}$

ex

ex

17) Total Thrust from Soil that are Free to Move to Considerable Amount C

$$P = \left(\left(0.5 \cdot \gamma \cdot (h_w)^2 \cdot K_A \right) - \left(2 \cdot C \cdot h_w \cdot \sqrt{K_A} \right) \right)$$
(Deen Catculator C
9.923913kN/m = $\left((0.5 \cdot 18kN/m^3 \cdot (3.1m)^2 \cdot 0.15 \right) - \left(2 \cdot 1.27kPa \cdot 3.1m \cdot \sqrt{0.15} \right) \right)$
18) Total Thrust from Soil when Surface behind Wall is Level C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \cdot K_A \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \cdot K_A \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \right) - \left(2 \cdot C \cdot h_w \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \right) - \left(2 \cdot C \cdot h_w \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \right) - \left(2 \cdot C \cdot h_w \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \right) - \left(2 \cdot C \cdot h_w \right)$$
(Open Catculator C

$$P = \left(0.5 \cdot \gamma \cdot (h_w)^2 \right) - \left(2 \cdot C \cdot h_w \right)$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$
(Open Catculator C

$$P = \left(h_w \right)^2 \cdot K_P$$

$$\begin{split} & \textbf{fx} \quad \gamma = \frac{2 \cdot P}{\left(h_w\right)^2 \cdot K_A} \\ & \textbf{ex} \quad 13.87444 \text{kN/m}^3 = \frac{2 \cdot 10 \text{kN/m}}{\left(3.1\text{m}\right)^2 \cdot 0.15} \end{split}$$

6/10

22) Unit Weight of Soil given Total Thrust from Soil that are Completely Restrained 🗹

$$\mathbf{fx} = \frac{2 \cdot P}{\left(h_{w}\right)^{2} \cdot \cos(i)} \cdot \left(\frac{\cos(i) + \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}{\cos(i) - \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}\right)$$

$$\underbrace{9.527772 \text{kN/m}^{3} = \frac{2 \cdot 10 \text{kN/m}}{(3.1 \text{m})^{2} \cdot \cos(30^{\circ})} \cdot \left(\frac{\cos(30^{\circ}) + \sqrt{(\cos(30^{\circ}))^{2} - (\cos(46^{\circ}))^{2}}}{\cos(30^{\circ}) - \sqrt{(\cos(30^{\circ}))^{2} - (\cos(46^{\circ}))^{2}}}\right)}$$

23) Unit Weight of Soil given Total Thrust from Soil that are Free to Move 🕝

$$\mathbf{\hat{\kappa}}_{\gamma} = \frac{2 \cdot P}{\left(h_{w}\right)^{2} \cdot \cos(i)} \cdot \left(\frac{\cos(i) - \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}{\cos(i) + \sqrt{\left(\cos(i)\right)^{2} - \left(\cos(\phi)\right)^{2}}}\right)$$

$$\underbrace{\text{ex}} 0.606123 \text{kN/m}^{3} = \frac{2 \cdot 10 \text{kN/m}}{(3.1\text{m})^{2} \cdot \cos(30^{\circ})} \cdot \left(\frac{\cos(30^{\circ}) - \sqrt{(\cos(30^{\circ}))^{2} - (\cos(46^{\circ}))^{2}}}{\cos(30^{\circ}) + \sqrt{(\cos(30^{\circ}))^{2} - (\cos(46^{\circ}))^{2}}} \right)$$

24) Unit Weight of Soil given Total Thrust from Soil with Small Angles of Internal Friction 🕑

Open Calculator

Open Calculator

$$\begin{split} & \textbf{fx} \ \gamma = \left(\left(2 \cdot \frac{1}{\left(h_{w}\right)^{2}} \right) + \left(4 \cdot \frac{C}{h_{w}} \right) \right) \\ & \textbf{ex} \ 3.719875 \text{kN/m}^{3} = \left(\left(2 \cdot \frac{10 \text{kN/m}}{(3.1\text{m})^{2}} \right) + \left(4 \cdot \frac{1.27 \text{kPa}}{3.1\text{m}} \right) \right) \end{split}$$

// D

25) Unit Weight of Soil given Total Thrust of Soil that are Free to Move only Small Amount 🚰

Open Calculator

Variables Used

- C Cohesion in Soil as Kilopascal (Kilopascal)
- hw Total Height of Wall (Meter)
- i Angle of Inclination (Degree)
- KA Coefficient of Active Pressure
- Kp Coefficient of Passive Pressure
- P Total Thrust of Soil (Kilonewton per Meter)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- **•** Angle of Internal Friction (Degree)

9/10

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: cos, cos(Angle) Trigonometric cosine function
- Function: sqrt, sqrt(Number) Square root function
- Function: tan, tan(Angle) Trigonometric tangent function
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Pressure in Kilopascal (kPa) Pressure Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Surface Tension in Kilonewton per Meter (kN/m) Surface Tension Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ Soils
 Lateral Pressure for Cohesive and Non Cohesive Formulas Soil Formulas 🖸
- Bearing Capacity of Cohesive Soil Formulas
- Bearing Capacity of Non-cohesive Soil Formulas 🖸
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas
- Foundation Stability Analysis Formulas
- Atterberg Limits Formulas
- Bearing Capacity of Soil: Terzaghi's Analysis Formulas
- Compaction of Soil Formulas
- Earth Moving Formulas

- Minimum Depth of Foundation by Rankine's Analysis Formulas
- Pile Foundations Formulas
- Scraper Production Formulas
- Slope Stability Analysis using Bishops Method Formulas 🖸
- Slope Stability Analysis using Culman's Method Formulas 🚺
- Vibration Control in Blasting Formulas
- Void Ratio of Soil Sample Formulas
- Water Content of Soil and Related Formulas G

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/15/2024 | 11:38:21 PM UTC

Please leave your feedback here...

