



# Slope Stability Analysis using Bishops Method Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





Open Calculator

Open Calculator

Open Calculator

Open Calculator

## List of 35 Slope Stability Analysis using Bishops Method Formulas

### Slope Stability Analysis using Bishops Method 🗗

1) Change in Normal Stress given Overall Pore Pressure Coefficient

$$\Delta \sigma_1 = rac{\Delta u}{R}$$

 $ex 6Pa = \frac{3Pa}{0.50}$ 

### 2) Change in Pore Pressure given Overall Pore Pressure Coefficient

fx  $ig|\Delta \mathbf{u} = \Delta \mathbf{\sigma}_1 \cdot \mathbf{B}ig|$ 

3) Effective Angle of Internal Friction given Shear Force in Bishop's Analysis

$$\phi' = a anigg(rac{( ext{S} \cdot ext{f}_{ ext{s}}) - ( ext{c}' \cdot ext{l})}{ ext{P} - ( ext{u} \cdot ext{l})}igg)$$

 $\boxed{ 9.874119^\circ = a \tan \bigg( \frac{(11.07 \mathrm{N} \cdot 2.8) - (4 \mathrm{Pa} \cdot 9.42 \mathrm{m})}{150 \mathrm{N} - (20 \mathrm{Pa} \cdot 9.42 \mathrm{m})} \bigg) }$ 

### 4) Effective Angle of Internal Friction given Shear Strength



 $oxed{ex} 1.301768^{\circ} = a anigg(rac{0.025 ext{MPa} - 4 ext{Pa}}{1.1 ext{MPa} - 20 ext{Pa}}igg)$ 



### 5) Effective Cohesion of Soil given Normal Stress on Slice

 $\mathbf{c}' = \mathbf{r} - \left( \left( \sigma_{\mathrm{normal}} - \mathbf{u} 
ight) \cdot an \left( rac{\phi' \cdot \pi}{180} 
ight) 
ight)$ 

Open Calculator

### 6) Effective Cohesion of Soil given Shear Force in Bishop's Analysis

 $\mathbf{c'} = \frac{(S \cdot f_s) - \left((P - (u \cdot l)) \cdot tan\left(\frac{\phi' \cdot \pi}{180}\right)\right)}{l}$ 

Open Calculator

### 7) Effective Stress on Slice

 $\mathbf{f}\mathbf{x} \mid \mathbf{\sigma}^{'} = \left( rac{\mathrm{P}}{1} 
ight) - \Sigma \mathrm{U}$ 

Open Calculator 🗗

### 8) Factor of Safety given by Bishop

fx  $f_{
m s} = m - (n \cdot r_{
m u})$ 

Open Calculator 🗗

 $\texttt{ex} \ 2.71 = 2.98 - (0.30 \cdot 0.9)$ 

### 9) Factor of Safety given Shear Force in Bishop's Analysis

 $\mathbf{f}_{s} = rac{\left(c' \cdot l
ight) + \left(P - \left(u \cdot l
ight)
ight) \cdot an\left(rac{\phi' \cdot \pi}{180}
ight)}{S}$ 

Open Calculator

 $= \frac{(4 \text{Pa} \cdot 9.42 \text{m}) + (150 \text{N} - (20 \text{Pa} \cdot 9.42 \text{m})) \cdot \tan \left(\frac{9.99^{\circ} \cdot \pi}{180}\right)}{11.07 \text{N}}$ 



© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!



### 10) Height of Slice given Pore Pressure Ratio

 $\mathbf{z} = \left(rac{F_{\mathrm{u}}}{r_{\mathrm{u}} \cdot \gamma}
ight)$ 

Open Calculator

Open Calculator

Open Calculator 2

Open Calculator 🚰

Open Calculator

 $\mathbf{ex} \ 3.264815 \mathbf{m} = \left( \frac{52.89 \mathrm{kN/m^2}}{0.9 \cdot 18 \mathrm{kN/m^3}} \right)$ 

### 11) Horizontal Distance of Slice from Centre of Rotation

### 12) Length of Arc of Slice

### 13) Length of Arc of Slice given Effective Stress

= 12.5m =  $\frac{150N}{10Pa + 2N}$ 

### 14) Length of Arc of Slice given Shear Force in Bishop's Analysis





© calculatoratoz.com. A softusvista inc. venture!



### 15) Normal Stress on Slice

$$\sigma_{normal} = \frac{P}{1}$$

Open Calculator

### 16) Normal Stress on Slice given Shear Strength



Open Calculator

$$23.28608 \mathrm{Pa} = \left( \frac{2.06 \mathrm{Pa} - 2.05 \mathrm{Pa}}{\tan \left( \frac{9.99^{\circ} \cdot \pi}{180} \right)} \right) + 20 \mathrm{Pa}$$

### 17) Overall Pore Pressure Coefficient

$$\mathbf{E} = rac{\Delta \mathbf{u}}{\Delta \sigma_1}$$

Open Calculator

$$\boxed{\textbf{ex}} 0.5 = \frac{3 \text{Pa}}{6 \text{Pa}}$$

### 18) Pore Pressure given Effective Stress on Slice

$$\Sigma U = \left(rac{P}{l}
ight) - \sigma^{'}$$

Open Calculator



### 19) Pore Pressure Ratio given Horizontal Width

fx  $\left[\mathbf{r}_{\mathrm{u}}=rac{\mathbf{u}\cdot\mathbf{w}}{\Sigma\mathbf{W}}
ight]$ 

Open Calculator 🗹

### 20) Pore Pressure Ratio given Unit Weight

 $\mathbf{f}_{u} = \left(\frac{F_{u}}{\gamma \cdot z}\right)$ 

Open Calculator

 $\boxed{0.979444 = \left(\frac{52.89 kN/m^2}{18 kN/m^3 \cdot 3.0 m}\right)}$ 

### 21) Pore Water Pressure given Pore Pressure Ratio

 $\mathbf{f}\mathbf{x}egin{bmatrix} \mathbf{F}_{\mathrm{u}} = (\mathbf{r}_{\mathrm{u}}\cdot\mathbf{\gamma}\cdot\mathbf{z}) \end{bmatrix}$ 

Open Calculator

=  $48.6 \mathrm{kN/m^2} = (0.9 \cdot 18 \mathrm{kN/m^3} \cdot 3.0 \mathrm{m})$ 

### 22) Radius of Arc when Total Shear Force on Slice is Available

 $\mathbf{f}\mathbf{x} = rac{\Sigma \mathbf{W} \cdot \mathbf{x}}{\Sigma \mathbf{S}}$ 

Open Calculator

 $= \frac{59.8 \text{N} \cdot 2.99 \text{m}}{32 \text{N}}$ 

### 23) Resultant Vertical Shear Force on Section N

fx

Open Calculator

 $ext{X}_{ ext{n}} = \left( ext{F}_{ ext{n}} \cdot ext{cos}igg(rac{ heta \cdot \pi}{180}igg)
ight) + \left( ext{S} \cdot ext{sin}igg(rac{ heta \cdot \pi}{180}igg)
ight) - ext{W} + ext{X}_{( ext{n}+1)}$ 

$$2.110605 ext{N} = \left(12.09 ext{N} \cdot \cos\left(rac{45\degree \cdot \pi}{180}
ight)
ight) + \left(11.07 ext{N} \cdot \sin\left(rac{45\degree \cdot \pi}{180}
ight)
ight) - 20.0 ext{N} + 9.87 ext{N}$$







#### 24) Resultant Vertical Shear Force on Section N+1

fx

Open Calculator

$$X_{(n+1)} = W + X_n - \left(F_n \cdot \cos\left(rac{ heta \cdot \pi}{180}
ight)
ight) + \left(S \cdot \sin\left(rac{ heta \cdot \pi}{180}
ight)
ight)$$

ex

$$\left[10.95288 \text{N} = 20.0 \text{N} + 2.89 \text{N} - \left(12.09 \text{N} \cdot \cos\left(\frac{45° \cdot \pi}{180}\right)\right) + \left(11.07 \text{N} \cdot \sin\left(\frac{45° \cdot \pi}{180}\right)\right)\right]$$

### 25) Shear Force in Bishop's Analysis

fx  $S = \tau \cdot 1$ 

Open Calculator

 $10.4562N = 1.11Pa \cdot 9.42m$ 

### 26) Shear Force in Bishop's Analysis given Factor of Safety

 $ext{S} = rac{\left( ext{c'} \cdot ext{l} 
ight) + \left( ext{P} - \left( ext{u} \cdot ext{l} 
ight) 
ight) \cdot ext{tan} \left( rac{\phi' \cdot \pi}{180} 
ight)}{ ext{f}_{ ext{s}}}$ 

Open Calculator 🗗

### 27) Shear Strength given Normal Stress on Slice 🗗

 $au = \left(c' + (\sigma_{normal} - u) \cdot tan\left(rac{\phi' \cdot \pi}{180}
ight)
ight)$ 

Open Calculator

$$\boxed{\textbf{ax} \ 3.986945 \text{Pa} = \left(4 \text{Pa} + (15.71 \text{Pa} - 20 \text{Pa}) \cdot \tan \left(\frac{9.99\degree \cdot \pi}{180}\right)\right)}$$



Open Calculator

### 28) Shear Stress given Shear Force in Bishop's Analysis 🗗

 $\boxed{\text{fx}} \boxed{\tau = \frac{\mathrm{S}}{\mathrm{1}}}$ 

\_

 $= 1.175159 Pa = \frac{11.07 N}{9.42 m}$ 

### 29) Total Normal Force Acting at Base of Slice

fx  $P = \sigma_{normal} \cdot l$ 

Open Calculator

 $\texttt{ex} \ 147.9882 N = 15.71 Pa \cdot 9.42 m$ 

### fx $P = (\sigma' + \Sigma U) \cdot l$

30) Total Normal Force Acting at Base of Slice given Effective Stress

 $\mathbf{ex} \ 113.04 \mathrm{N} = (10 \mathrm{Pa} + 2 \mathrm{N}) \cdot 9.42 \mathrm{m}^{-1}$ 

### 31) Total Normal Force Acting on Slice given Weight of Slice



Open Calculator

Open Calculator 🗗

### 32) Total Shear Force on Slice given Radius of Arc

 $\Sigma S = rac{\Sigma W \cdot x}{r}$ 

Open Calculator





#### 33) Total Weight of Slice given Total Shear Force on Slice

 $\Sigma W = rac{\Sigma S \cdot r}{x}$ 

Open Calculator 🗗

### 34) Unit weight of Soil given Pore Pressure Ratio

 $\boxed{\mathbf{f}\mathbf{z}} \gamma = \left(\frac{F_u}{r_u \cdot z}\right)$ 

Open Calculator

 $ext{ex} \left[ 19.58889 ext{kN/m}^3 = \left( rac{52.89 ext{kN/m}^2}{0.9 \cdot 3.0 ext{m}} 
ight) 
ight]$ 

### 35) Weight of Slice given Total Normal Force Acting on Slice

fx

Open Calculator

$$W = \left(F_n \cdot \cos\left(\frac{\theta \cdot \pi}{180}\right)\right) + \left(S \cdot \sin\left(\frac{\theta \cdot \pi}{180}\right)\right) - X_n + X_{(n+1)}$$

ex

$$19.2206 \text{N} = \left(12.09 \text{N} \cdot \cos\left(\frac{45° \cdot \pi}{180}\right)\right) + \left(11.07 \text{N} \cdot \sin\left(\frac{45° \cdot \pi}{180}\right)\right) - 2.89 \text{N} + 9.87 \text{N}$$





#### Variables Used

- B Pore Pressure Coefficient Overall
- C Cohesion in Soil (Pascal)
- c' Effective Cohesion (Pascal)
- Fn Total Normal Force in Soil Mechanics (Newton)
- fs Factor of Safety
- Fu Upward Force in Seepage Analysis (Kilonewton per Square Meter)
- Length of Arc (Meter)
- m Stability Coefficient m in Soil Mechanics
- n Stability Coefficient n
- P Total Normal Force (Newton)
- r Radius of Soil Section (Meter)
- r<sub>u</sub> Pore Pressure Ratio
- S Shear Force on Slice in Soil Mechanics (Newton)
- u Upward Force (Pascal)
- w Width of Soil Section (Meter)
- W Weight of Slice (Newton)
- X Horizontal Distance (Meter)
- X<sub>(n+1)</sub> Vertical Shear Force at other Section (Newton)
- X<sub>n</sub> Vertical Shear Force (Newton)
- **z** Height of Slice (Meter)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- Δu Change in Pore Pressure (Pascal)
- Δσ<sub>1</sub> Change in Normal Stress (Pascal)
- ζ <sub>soil</sub> Shear Strength (Megapascal)
- **0** Angle of Base (Degree)
- σ<sub>nm</sub> Normal Stress in Mega Pascal (Megapascal)
- σ<sub>normal</sub> Normal Stress in Pascal (Pascal)
- σ Effective Normal Stress (Pascal)





- ΣS Total Shear Force in Soil Mechanics (Newton)
- **ΣU** Total Pore Pressure (Newton)
- ΣW Total Weight of Slice in Soil Mechanics (Newton)
- T Shear Strength of Soil in Pascal (Pascal)
- φ' Effective Angle of Internal Friction (Degree)
- τ Shear Stress of Soil in Pascal (Pascal)





### **Constants, Functions, Measurements used**

- Constant: pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Function: atan, atan(Number)

  Inverse trigonometric tangent function
- Function: cos, cos(Angle)

  Trigonometric cosine function
- Function: sin, sin(Angle)

  Trigonometric sine function
- Function: tan, tan(Angle)

  Trigonometric tangent function
- Measurement: Length in Meter (m)
  Length Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa), Kilonewton per Square Meter (kN/m²)
  - Pressure Unit Conversion
- Measurement: Force in Newton (N)
  Force Unit Conversion
- Measurement: Angle in Degree (°)

  Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)

  Specific Weight Unit Conversion
- Measurement: Stress in Pascal (Pa)
  Stress Unit Conversion





#### **Check other formula lists**

- Bearing Capacity for Strip Footing for C-Φ
   Earth Moving Formulas
   Lateral Pressure for Cohes
- Bearing Capacity of Cohesive Soil Formulas
- Bearing Capacity of Non-cohesive Soil
   Formulas
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas
- Foundation Stability Analysis Formulas
- Atterberg Limits Formulas
- Bearing Capacity of Soil: Terzaghi's Analysis Formulas
- Compaction of Soil Formulas

- Lateral Pressure for Cohesive and Non Cohesive Soil Formulas
- Minimum Depth of Foundation by Rankine's Analysis Formulas
- Pile Foundations Formulas
- Scraper Production Formulas
- Slope Stability Analysis using Bishops Method Formulas
- Vibration Control in Blasting Formulas
- Void Ratio of Soil Sample Formulas
- Water Content of Soil and Related Formulas

Feel free to SHARE this document with your friends!

#### **PDF** Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/2/2024 | 4:53:03 PM UTC

Please leave your feedback here..



