

Stability Analysis of Infinite Slopes Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - **30,000+ Calculators!** Calculate With a Different Unit for Each Variable - **In built Unit Conversion!** Widest Collection of Measurements and Units - **250+ Measurements!**

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 37 Stability Analysis of Infinite Slopes Formulas

Stability Analysis of Infinite Slopes 🕑

$$\mathbf{fx} \ \Phi_{
m i} = a anigg(rac{(au_{
m Shear stress} \cdot {f f}_{
m s}) - {f c}_{
m u}}{\sigma_{
m Normal}} igg)$$

ex
$$78.68985^{\circ} = a \tan\left(\frac{(15.909 \text{Pa} \cdot 0.88) - 10 \text{Pa}}{0.8 \text{Pa}}\right)$$

2) Angle of Internal Friction given Shear Strength of Cohesionless Soil 🕑

$$fx \ \varphi = a \tan\left(\frac{\tau_{s}}{\sigma_{nm}}\right)$$

$$ex \ 47.48955^{\circ} = a \tan\left(\frac{1.2MPa}{1.1MPa}\right)$$

$$Open Calculator$$

3) Angle of Internal Friction given Shear Strength of Cohesive Soil 🕑

fx
$$\Phi_{\rm c} = a \tan\left(rac{ au_{
m s} - {
m c}_{
m u}}{\sigma_{
m Normal}}
ight)$$

ex $89.99996^{\circ} = a \tan\left(rac{1.2{
m MPa} - 10{
m Pa}}{0.8{
m Pa}}
ight)$

Open Calculator

Open Calculator

4) Angle of Internal Friction given Shear Strength of Soil 🖆 Open Calculator $\mathbf{E} \Phi_{\mathrm{i}} = a \tan \left(\left(\frac{\mathbf{\tau}_{\mathrm{s}}}{\tau} \right) \cdot \mathrm{tan}((\mathrm{I})) \right)$ ex $89.99949^{\circ} = a \tan\left(\left(\frac{1.2 \text{MPa}}{61 \text{Pa}}\right) \cdot \tan((80^{\circ}))\right)$ 5) Cohesion given Critical Depth for Cohesive Soil 🕻 Open Calculator $\mathbf{fr} \mathbf{c} = \left(\mathbf{h}_{\mathbf{c}} \cdot \gamma \cdot \left(\tan((\mathbf{I})) - \tan((\phi)) \right) \cdot \left(\cos((\mathbf{I})) \right)^2 \right)$ ex $2.511133 \text{kPa} = \left(1.01 \text{m} \cdot 18 \text{kN} / \text{m}^3 \cdot (\tan((80\degree)) - \tan((47.48\degree))) \cdot (\cos((80\degree)))^2\right)$ 6) Cohesion given Shear Strength of Cohesive Soil 🗹 Open Calculator $\mathbf{f} \mathbf{x} = \tau_{\mathrm{f}} - \left(\sigma_{\mathrm{n}} \cdot \tan\left(\frac{\Phi_{\mathrm{i}} \cdot \pi}{180}\right)\right)$ ex 4.400703kPa = 4.92kN/m² - $\left(21.66$ kN/m² · tan $\left(\frac{78.69^{\circ} \cdot \pi}{180}\right)\right)$ 7) Cohesion given Stability Number for Cohesive Soil 🕻 Open Calculator fx $\mathbf{c} = \mathbf{S}_{n} \cdot (\mathbf{\gamma} \cdot \mathbf{h}_{cs})$ ex 2.49642kPa = $2.01 \cdot (18$ kN/m³ $\cdot 0.069$ m) 8) Cohesion of Soil given Factor of Safety for Cohesive Soil 💪 Open Calculator fx $c = (\zeta_{cs} \cdot f_s) - (\sigma_n \cdot tan((\phi)))$ ex 2.532417kPa = (29.72kN/m² · 0.88) - (21.66kN/m² · tan $((47.48^{\circ})))$

4/14

5/14

Open Calculator

Open Calculator

Open Calculator 🕑

18) Factor of Safety given Critical Depth

19) Factor of Safety given Stability Number 🕑

fx
$$\mathbf{F_c} = \left(rac{c}{\mathbf{S_n} \cdot \mathbf{\gamma} \cdot \mathbf{H_{Mobilised}}}
ight)$$

ex
$$1.735075 = \left(rac{2.511 \mathrm{kPa}}{2.01 \cdot 18 \mathrm{kN/m^3} \cdot 0.04 \mathrm{m}}
ight)$$

20) Mobilized Cohesion 🗹

21) Mobilized Cohesion given Stability Number for Cohesive Soil 🕑

fx
$$C_c = (S_n \cdot \gamma \cdot H)$$

x
$$104.922 \mathrm{Pa} = (2.01 \cdot 18 \mathrm{kN/m^3} \cdot 2.9 \mathrm{m})$$

22) Normal Stress given Factor of Safety for Cohesive Soil 🕻

$$\sigma_{Normal} = \frac{(\tau_{Shearstress} \cdot f_s) - c_u}{tan((\Phi_i))}$$
Open Calculator C
$$0.799989Pa = \frac{(15.909Pa \cdot 0.88) - 10Pa}{tan((78.69^{\circ}))}$$

$$contemporter = 0$$

$$contemporter = 0$$

$$contemporter = 0$$

$$contemporter = 0$$

23) Normal Stress given Shear Strength of Cohesionless Soil 🕻

28) Shear Strength of Soil given Angle of Internal Friction 🕑

$$\begin{aligned} & \left(\tau_{\text{soil}} = \left(\tau_{\text{Shearstress}} \cdot \left(\frac{\tan(\Phi_i)}{\tan(I)} \right) \right) \right) \end{aligned} \\ & \left(14.02584 \text{MPa} = \left(15.909 \text{Pa} \cdot \left(\frac{\tan(78.69^{\circ})}{\tan(80^{\circ})} \right) \right) \right) \end{aligned} \\ & \left(14.02584 \text{MPa} = \left(15.909 \text{Pa} \cdot \left(\frac{\tan(78.69^{\circ})}{\tan(80^{\circ})} \right) \right) \end{aligned} \\ & \left(29 \right) \text{Shear Stress given Factor of Safety for Cohesive Soil } \textbf{C} \end{aligned} \\ & \left(\tau_{\text{Shearstress}} = \frac{c_u + (\sigma_{\text{Normal}} \cdot \tan((\Phi_i)))}{f_s} \right) \end{aligned} \\ & \left(\tau_{\text{Shearstress}} = \frac{c_u + (\sigma_{\text{Normal}} \cdot \tan((\Phi_i)))}{f_s} \right) \end{aligned} \\ & \left(15.90906 \text{Pa} = \frac{10 \text{Pa} + (0.8 \text{Pa} \cdot \tan((78.69^{\circ}))))}{0.88} \end{aligned} \\ & \left(15.90906 \text{Pa} = \frac{10 \text{Pa} + (0.8 \text{Pa} \cdot \tan((78.69^{\circ}))))}{0.88} \end{aligned} \\ & \left(\tau_i = \frac{\tau_s}{\tan((\phi))} \right) \end{aligned} \\ & \left(\tau_i = \frac{\tau_s}{\tan((\phi))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan((B^{\circ}))} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan(B^{\circ})} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan(B^{\circ})} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{\tan(B^{\circ})} \right) \end{aligned} \\ & \left(\sigma_i = \frac{1.2 \text{MPa}}{(T_i + T_i + T_$$

32) Stability Number for Cohesive Soil given Mobilized Cohesion 🕑

36) Unit Weight of Soil given Mobilized Cohesion 🕑

37) Unit Weight of Soil given Stability Number for Cohesive Soil 🕑

Variables Used

- C Cohesion of Soil (Kilopascal)
- Cc Mobilized Cohesion for Cohesive Soil (Pascal)
- C_m Mobilized Cohesion (Pascal)
- **C**_u Unit Cohesion (Pascal)
- Fc Factor of Safety with respect to Cohesion
- **f**_S Factor of Safety
- H Depth at Mobilized Cohesion (Meter)
- h_c Critical Depth (Meter)
- hcritical Critical Depth for Factor of Safety (Meter)
- h_{cs} Critical Depth for Stability Number (Meter)
- HMobilised Depth at Mobilized Cohesion in Stability Number (Meter)
- | Angle of Inclination (Degree)
- Sn Stability Number
- **Y** Unit Weight of Soil (Kilonewton per Cubic Meter)
- ζ_{cs} Shear Stress in Cohesive Soil (Kilonewton per Square Meter)
- σ_n Normal Stress at a Point in Soil (Kilonewton per Square Meter)
- σ_{nm} Normal Stress in Mega Pascal (Megapascal)
- σ_{Normal} Normal Stress (Pascal)
- T_f Shear Strength in KN per Cubic Meter (Kilonewton per Square Meter)
- T_S Shear Strength (Megapascal)
- Tsoil Shear Strength of Soil (Megapascal)
- **φ** Angle of Internal Friction (Degree)
- **Φ**_c Angle of Internal Friction of Cohesive Soil (Degree)
- **Φ_i** Angle of Internal Friction of Soil (Degree)

- *τ* Shear Stress (Pascal)
- *τ*_i Shear Stress given Angle of Internal Friction (*Pascal*)
- *t*Shearstress Shear Stress for Factor of Safety (Pascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: cot, cot(Angle) Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa), Kilopascal (kPa) Pressure Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Stress in Pascal (Pa), Kilonewton per Square Meter (kN/m²) Stress Unit Conversion

Check other formula lists

 Bearing Capacity for Strip Footing for C-Φ Soils Formulas Bearing Capacity of Cohesive Soil Formulas Bearing Capacity of Non-cohesive Soil Formulas Bearing Capacity of Soils Formulas Bearing Capacity of Soils: Meyerhof's Analysis Formulas Foundation Stability Analysis Formulas Atterberg Limits Formulas Bearing Capacity of Soil: Terzaghi's Analysis Formulas Compaction of Soil Formulas Earth Moving Formulas Lateral Pressure for Cohesive and Non Cohesive Soil Formulas Minimum Depth of Foundation by Rankine's Analysis Formulas 	 Pile Foundations Formulas Porosity of Soil Sample Formulas Scraper Production Formulas Seepage Analysis Formulas Slope Stability Analysis using Bishops Method Formulas Slope Stability Analysis using Culman's Method Formulas Soil Origin and Its Properties Formulas Specific Gravity of Soil Formulas Stability Analysis of Infinite Slopes Formulas Stability Analysis of Infinite Slopes in Prism Formulas Vibration Control in Blasting Formulas Void Ratio of Soil Sample Formulas Water Content of Soil and Related Formulas
---	--

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/15/2024 | 7:26:01 AM UTC

Please leave your feedback here ...

© calculatoratoz.com. A softusvista inc. venture!

