

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance

1) Biot Number using Characteristic Length

$$ext{Bi} = rac{h_{transfer} \cdot L_{char}}{k_{fin}}$$

Open Calculator 🖸

$$\boxed{ \text{ex} \\ 0.388998 = \frac{13.2 \text{W}/\text{m}^2 \text{*K} \cdot 0.3 \text{m}}{10.18 \text{W}/(\text{m}^2 \text{K})} }$$

2) Correction Length for Cylindrical Fin with Non-Adiabatic Tip

$$ag{L_{ ext{cylindrical}}} = ext{L}_{ ext{fin}} + \left(rac{ ext{d}_{ ext{fin}}}{4}
ight)$$

Open Calculator

$$\boxed{5.75\mathrm{m} = 3\mathrm{m} + \left(\frac{11\mathrm{m}}{4}\right)}$$

3) Correction Length for Square Fin with Non-Adiabatic Tip

$$oxed{\mathbb{E}} \mathbf{L}_{ ext{sqaure}} = \mathbf{L}_{ ext{fin}} + \left(rac{\mathbf{w}_{ ext{fin}}}{4}
ight)$$

Open Calculator

$$\boxed{4.75\mathrm{m} = 3\mathrm{m} + \left(\frac{7\mathrm{m}}{4}\right)}$$

4) Correction Length for Thin Rectangular Fin with Non-Adiabatic Tip 🖒

$$oxed{\mathbb{E}} \operatorname{L}_{ ext{rectangular}} = \operatorname{L}_{ ext{fin}} + \left(rac{\operatorname{t}_{ ext{fin}}}{2}
ight)$$

Open Calculator

$$\boxed{3.6\mathrm{m} = 3\mathrm{m} + \left(\frac{1.2\mathrm{m}}{2}\right)}$$

5) Critical Radius of Insulation of Cylinder

$$R_{c} = rac{K_{insulation}}{h_{outside}}$$

Open Calculator

Thermal Resistance Formulas... 6) Critical Radius of Insulation of Hollow Sphere

 $m R_c = 2 \cdot rac{K_{
m insulation}}{h_{
m outside}}$

Open Calculator 2

 $4.285714 \text{m} = 2 \cdot \frac{21 \text{W}/(\text{m*K})}{9.8 \text{W}/\text{m}^2 \text{K}}$

7) Heat Dissipation from Fin Insulated at End Tip

Open Calculator

 $Q_{fin} = \left(\sqrt{(P_{fin} \cdot h_{transfer} \cdot k_{fin} \cdot A_c)}\right) \cdot (T_w - T_s) \cdot tanh\left(\left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right) \cdot L_{fin}\right)$

$$37945.93W = \left(\sqrt{(25m \cdot 13.2W/m^2*K \cdot 10.18W/(m^*K) \cdot 10.2m^2)}\right) \cdot (305K - 100K) \cdot \tanh\left(\left(\sqrt{\frac{25m \cdot 13.2W/m^2*K \cdot 10.18W/(m^*K) \cdot 10.2m^2)}{10.18W/(m^*K) \cdot 10.2m^2}}\right)\right)$$

8) Heat Dissipation from Fin Losing Heat at End Tip

 $Q_{fin} = \left(\sqrt{P_{fin} \cdot h_{transfer} \cdot k_{fin} \cdot A_c}\right) \cdot \left(T_w - T_s\right) \cdot \frac{\left(\tanh\left(\left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right) \cdot L_{fin}\right) + \frac{h_{tran}}{k_{fin} \cdot \left(\sqrt{P_{fin} \cdot h_{transfer}}\right)} \cdot L_{fin}\right)}{1 + \tanh\left(\left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right) \cdot L_{fin} \cdot \frac{h_{tran}}{k_{fin} \cdot \left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right)}\right)}$

ex

$$20334.46W = \left(\sqrt{25m \cdot 13.2W/m^{2} * K \cdot 10.18W/(m^{*}K) \cdot 10.2m^{2}}\right) \cdot \left(305K - 100K\right) \cdot \frac{\left(\tanh\left(\left(\sqrt{\frac{25m \cdot 13.2W}{10.18W/(m^{*}K)}}\right) \cdot \left(305K - 100K\right)\right) \cdot \left(305K - 100K\right)}{1 + \tanh\left(\left(\sqrt{\frac{25m}{10.18W}}\right) \cdot \left(305K - 100K\right)\right)} \cdot \left(305K - 100K\right) \cdot \frac{\left(\tanh\left(\left(\sqrt{\frac{25m \cdot 13.2W}{10.18W}}\right) \cdot \left(305K - 100K\right)\right) \cdot \left(305K - 100K\right)\right)}{1 + \tanh\left(\left(\sqrt{\frac{25m \cdot 10.18W}{10.18W}}\right) \cdot \left(305K - 100K\right)\right)}$$

9) Heat Dissipation from Infinitely Long Fin 🗗

 $\mathbf{K} \ \mathrm{Q_{fin}} = \left(\left(\mathrm{P_{fin} \cdot h_{transfer} \cdot k_{fin} \cdot A_{c}} \right)^{0.5} \right) \cdot \left(\mathrm{T_{w} - T_{s}} \right)$

Open Calculator 🛂

10) Heat Transfer in Fins given Fin Efficiency

k $Q_{
m fin} = U_{
m overall} \cdot A \cdot \eta \cdot \Delta T$

Open Calculator

 $32400W = 6W/m^2*K \cdot 50m^2 \cdot 0.54 \cdot 200K$

11) Inner Heat Transfer Coefficient given Inner Thermal Resistance

fx $h_{
m inside} = rac{1}{A_{
m inside} \cdot R_{
m th}}$

Open Calculator

 $oxed{ex} 1.373626 \mathrm{W/m^2*K} = rac{1}{0.14 \mathrm{m^2 \cdot 5.2 K/W}}$

12) Inside Area given Thermal Resistance for Inner Surface

 $\mathbf{A}_{\mathrm{inside}} = rac{1}{\mathrm{h}_{\mathrm{inside}} \cdot \mathrm{R}_{\mathrm{th}}}$

Open Calculator

 $oxed{ex} 0.14245 \mathrm{m^2} = rac{1}{1.35 \mathrm{W/m^2*K \cdot 5.2 K/W}}$

13) Newton's Law of Cooling 🖸

 $q' = h_{\mathrm{transfer}} \cdot (T_{\mathrm{w}} - T_{\mathrm{f}})$

Open Calculator 🗗

 $m ex = 396W/m^2 = 13.2W/m^2*K \cdot (305K - 275K)$

14) Outside Area given Outer Thermal Resistance

 \mathbf{f} $\mathbf{A}_{\mathrm{outside}} = rac{1}{\mathbf{h}_{\mathrm{outside}} \cdot \mathbf{R}_{\mathrm{th}}}$

Open Calculator

 $oxed{ex} 0.019623 \mathrm{m}^2 = rac{1}{9.8 \mathrm{W/m}^2 {}^*\mathrm{K} \cdot 5.2 \mathrm{K/W}}$

15) Outside Heat Transfer Coefficient given Thermal Resistance 🗗

 $\mathbf{k} \mathbf{h}_{ ext{outside}} = rac{1}{\mathrm{R}_{ ext{th}} \cdot \mathrm{A}_{ ext{outside}}}$

Open Calculator

 \mathbf{ex} $10.12146 \mathrm{W/m^2*K} = \frac{1}{5.2 \mathrm{K/W} \cdot 0.019 \mathrm{m^2}}$

16) Thermal Resistance for Conduction at Tube Wall

 $m R_{th} = rac{ln \left(rac{r_2}{r_1}
ight)}{2 \cdot \pi \cdot k \cdot l}$

Open Calculator

17) Thermal Resistance for Convection at Inner Surface

 $m R_{th} = rac{1}{A_{inside} \cdot h_{inside}}$

Open Calculator

$$= \frac{1}{0.14 \text{m}^2 \cdot 1.35 \text{W}/\text{m}^2 \cdot \text{K}}$$

18) Thermal Resistance for Convection at Outer Surface

 $m R_{th} = rac{1}{h_{outside} \cdot A_{outside}}$

Open Calculator

$$\mathbf{ex} = \frac{1}{9.8 \text{W}/\text{m}^2 \text{K} \cdot 0.019 \text{m}^2}$$

19) Total Thermal Resistance 🗹

 $\Sigma R_{thermal} = \frac{1}{U_{overall} \cdot A}$

Open Calculator

$$\mathbf{ex}$$
 0.003333K/W = $\frac{1}{6\text{W/m}^2\text{*K} \cdot 50\text{m}^2}$

20) Volumetric Heat Generation in Current Carrying Electrical Conductor 🖸

fx $\left[q_{g} = \left(i^{2} \right) \cdot
ho
ight]$

Open Calculator

$$\text{ex} \left[17 W/m^3 = \left((1000 A/m^2)^2 \right) \cdot 0.000017 \Omega^* m \right]$$

Variables Used

- A Area (Square Meter)
- Ac Cross Sectional Area (Square Meter)
- Ainside Inside Area (Square Meter)
- Aoutside Outside Area (Square Meter)
- Bi Biot Number
- d_{fin} Diameter of Cylindrical Fin (Meter)
- hinside Inside Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- houtside External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- htransfer Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- i Electric Current Density (Ampere per Square Meter)
- **k** Thermal Conductivity (Watt per Meter per K)
- **k**_{fin} Thermal Conductivity of Fin (Watt per Meter per K)
- Kinsulation Thermal Conductivity of Insulation (Watt per Meter per K)
- I Length of Cylinder (Meter)
- L_{char} Characteristic Length (Meter)
- L_{cylindrical} Correction Length for Cylindrical Fin (Meter)
- Lfin Length of Fin (Meter)
- Lrectangular Correction Length for Thin Rectangular Fin (Meter)
- L_{sqaure} Correction Length for Sqaure Fin (Meter)
- Pfin Perimeter of Fin (Meter)
- q' Heat Flux (Watt per Square Meter)
- Q_{fin} Fin Heat Transfer Rate (Watt)
- qa Volumetric Heat Generation (Watt Per Cubic Meter)
- r₁ Inner Radius of Cylinder (Meter)
- **r**₂ Outer Radius of Cylinder (*Meter*)
- R_c Critical Radius of Insulation (Meter)
- R_{th} Thermal Resistance (Kelvin per Watt)
- T_f Temperature of Characteristic Fluid (Kelvin)
- tfin Thickness of Fin (Meter)
- T_s Surrounding Temperature (Kelvin)
- T_w Surface Temperature (Kelvin)
- Uoverall Overall Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- Wfin Width of Fin (Meter)

- η Fin Efficiency
- p Resistivity (Ohm Meter)
- ΣR_{thermal} Total Thermal Resistance (Kelvin per Watt)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: In, In(Number)

 Natural logarithm function (base e)
- Function: sqrt, sqrt(Number)
 Square root function
- Function: tanh, tanh(Number)

 Hyperbolic tangent function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Temperature in Kelvin (K)

 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Surface Current Density in Ampere per Square Meter (A/m²)
 Surface Current Density Unit Conversion
- Measurement: Thermal Resistance in Kelvin per Watt (K/W)
 Thermal Resistance Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))
 Thermal Conductivity Unit Conversion
- Measurement: Electric Resistivity in Ohm Meter (Ω*m)
 Electric Resistivity Unit Conversion
- Measurement: Heat Flux Density in Watt per Square Meter (W/m²)
 Heat Flux Density Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K)
 Heat Transfer Coefficient Unit Conversion
- Measurement: Power Density in Watt Per Cubic Meter (W/m³)
 Power Density Unit Conversion

Check other formula lists

- Basics of Heat Transfer Formulas
- Co-Relation of Dimensionless Numbers Formulas
- Heat Exchanger Formulas
- Heat Transfer from Extended Surfaces (Fins) Formulas 🔽
- · Heat Transfer from Extended Surfaces (Fins), Critical **Thickness of Insulation and Thermal Resistance** Formulas
- Unsteady State Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/14/2023 | 5:47:39 AM UTC

Please leave your feedback here...

