Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas...

1/9

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas

Calculators!

Examples

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas

2/9

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance 🗗

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas...

6) Critical Radius of Insulation of Hollow Sphere

fx
$$\mathrm{R_c} = 2 \cdot rac{\mathrm{K_{insulation}}}{\mathrm{h_{outside}}}$$

ex

ex
$$4.285714 m = 2 \cdot \frac{21 W/(m^*K)}{9.8 W/m^{2*}K}$$

7) Heat Dissipation from Fin Insulated at End Tip

$$\label{eq:Q_fin} \begin{split} \textbf{K} & \textbf{Open Calculator C} \\ \hline \textbf{Q}_{fin} = \left(\sqrt{(\textbf{P}_{fin} \cdot \textbf{h}_{transfer} \cdot \textbf{k}_{fin} \cdot \textbf{A}_c)} \right) \cdot (\textbf{T}_w - \textbf{T}_s) \cdot \tanh\left(\left(\sqrt{\frac{\textbf{P}_{fin} \cdot \textbf{h}_{transfer}}{\textbf{k}_{fin} \cdot \textbf{A}_c}} \right) \cdot \textbf{L}_{fin} \right) \end{split}$$

$$37945.93 \mathrm{W} = \left(\sqrt{(25 \mathrm{m} \cdot 13.2 \mathrm{W}/\mathrm{m}^{2} * \mathrm{K} \cdot 10.18 \mathrm{W}/(\mathrm{m}^{*} \mathrm{K}) \cdot 10.2 \mathrm{m}^{2})}
ight) \cdot (305 \mathrm{K} - 100 \mathrm{K}) \cdot anh\left(\left(\sqrt{rac{25 \mathrm{m} \cdot 1}{10.18 \mathrm{W}/\mathrm{m}^{2} + \mathrm{K} \cdot 10.18 \mathrm{W}/\mathrm{m}^{2} + \mathrm{K} \cdot 10.2 \mathrm{m}^{2}}
ight)
ight)$$

8) Heat Dissipation from Fin Losing Heat at End Tip 🚰

$$\begin{split} \hline \textbf{K} & \textbf{Open Calculator C} \\ Q_{fin} &= \left(\sqrt{P_{fin} \cdot h_{transfer}} \cdot k_{fin} \cdot A_c}\right) \cdot (T_w - T_s) \cdot \frac{\left(\tanh\left(\left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right) \cdot L_{fin}\right) + \frac{h_{transfer}}{k_{fin} \cdot \left(\sqrt{P_{fin} \cdot h_{transfer}}\right)} \right) \cdot L_{fin} \right)}{1 + \tanh\left(\left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right) \cdot L_{fin} \cdot \frac{h_{transfer}}{k_{fin} \cdot \left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right)} \right) \cdot L_{fin} \cdot \frac{h_{transfer}}{k_{fin} \cdot \left(\sqrt{\frac{P_{fin} \cdot h_{transfer}}{k_{fin} \cdot A_c}}\right)} \\ \textbf{ex} \end{split}$$

$$20334.46\mathrm{W} = \left(\sqrt{25\mathrm{m} \cdot 13.2\mathrm{W}/\mathrm{m}^{2}\mathrm{*K} \cdot 10.18\mathrm{W}/(\mathrm{m}^{*}\mathrm{K}) \cdot 10.2\mathrm{m}^{2}}\right) \cdot (305\mathrm{K} - 100\mathrm{K}) \cdot \frac{\left(\tanh\left(\left(\sqrt{\frac{25\mathrm{m} \cdot 13.2\mathrm{W}}{10.18\mathrm{W}/(\mathrm{m}^{*}\mathrm{K})}}\right) + 10.2\mathrm{m}^{2}\mathrm{K} \cdot 10.18\mathrm{W}/(\mathrm{m}^{*}\mathrm{K})\right)}{1 + \tanh\left(\left(\sqrt{\frac{25\mathrm{m}}{10.18\mathrm{W}}}\right) + 10.2\mathrm{m}^{2}\mathrm{K} \cdot 10.2\mathrm{M}^{2}\mathrm{K}\right)}$$

Open Calculator 🕑

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas...

16) Thermal Resistance for Conduction at Tube Wall

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas...

Variables Used

- A Area (Square Meter)
- Ac Cross Sectional Area (Square Meter)
- Ainside Inside Area (Square Meter)
- Aoutside Outside Area (Square Meter)
- Bi Biot Number
- d_{fin} Diameter of Cylindrical Fin (Meter)
- hinside Inside Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- houtside External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- ht Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- htransfer Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- i Electric Current Density (Ampere per Square Meter)
- **k** Thermal Conductivity (Watt per Meter per K)
- k_{fin} Thermal Conductivity of Fin (Watt per Meter per K)
- Kinsulation Thermal Conductivity of Insulation (Watt per Meter per K)
- I Length of Cylinder (Meter)
- Lchar Characteristic Length (Meter)
- Lcylindrical Correction Length for Cylindrical Fin (Meter)
- L_{fin} Length of Fin (Meter)
- Lrectangular Correction Length for Thin Rectangular Fin (Meter)
- Lsgaure Correction Length for Sqaure Fin (Meter)
- Pfin Perimeter of Fin (Meter)
- **q** Heat Flux (Watt per Square Meter)
- Q_{fin} Fin Heat Transfer Rate (Watt)
- **q**g Volumetric Heat Generation (Watt Per Cubic Meter)
- r1 Inner Radius of Cylinder (Meter)
- r2 Outer Radius of Cylinder (Meter)
- R_c Critical Radius of Insulation (Meter)
- Rth Thermal Resistance (Kelvin per Watt)
- T_f Temperature of Characteristic Fluid (Kelvin)
- t_{fin} Thickness of Fin (Meter)
- **T_s** Surrounding Temperature (Kelvin)
- T_w Surface Temperature (Kelvin)
- T_w Surface Temperature (Kelvin)

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas... • U_{overall} Overall Heat Transfer Coefficient (Watt per Square Meter per Kelvin)

- Wfin Width of Fin (Meter)
- **ΔT** Overall Difference in Temperature (Kelvin)
- **n** Fin Efficiency
- **p** Resistivity (Ohm Meter)
- ΣR_{thermal} Total Thermal Resistance (Kelvin per Watt)

Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas...

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-n

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tanh, tanh(Number) The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Surface Current Density in Ampere per Square Meter (A/m²) Surface Current Density Unit Conversion
- Measurement: Thermal Resistance in Kelvin per Watt (K/W)
 Thermal Resistance Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K)) Thermal Conductivity Unit Conversion
- Measurement: Electric Resistivity in Ohm Meter (Ω*m) Electric Resistivity Unit Conversion
- Measurement: Heat Flux Density in Watt per Square Meter (W/m²) Heat Flux Density Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m^{2*}K) Heat Transfer Coefficient Unit Conversion
- Measurement: Power Density in Watt Per Cubic Meter (W/m³) Power Density Unit Conversion

Check other formula lists

- Basics of Heat Transfer Formulas
- Co Relation of Dimensionless Numbers Formulas
- Heat Exchanger Formulas
- Heat Exchanger and its Effectiveness Formulas C

 Thermal Resistance Formulas C
- Heat Transfer from Extended Surfaces (Fins) Formulas 🚺
- Heat Transfer from Extended Surfaces (Fins), Critical Thickness of Insulation and Thermal Resistance Formulas
- Unsteady State Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/2/2024 | 6:10:41 AM UTC

Please leave your feedback here ...

