
calculatoratoz.com

Important Formulas of Paraboloid

Calculators!

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Important Formulas of Paraboloid

Important Formulas of Paraboloid

Height of Paraboloid ©

1) Height of Paraboloid
$f \mathrm{f} \quad \mathrm{h}=\mathrm{p} \cdot \mathrm{r}^{2}$
ex $50 \mathrm{~m}=2 \cdot(5 \mathrm{~m})^{2}$
2) Height of Paraboloid given Volume
$f \mathrm{x} h=\frac{2 \cdot \mathrm{~V}}{\pi \cdot \mathrm{r}^{2}}$
ex $50.92958 \mathrm{~m}=\frac{2 \cdot 2000 \mathrm{~m}^{3}}{\pi \cdot(5 \mathrm{~m})^{2}}$

Radius of Paraboloid

3) Radius of Paraboloid
$f x=\sqrt{\frac{h}{p}}$
ex $5 \mathrm{~m}=\sqrt{\frac{50 \mathrm{~m}}{2}}$
4) Radius of Paraboloid given Total Surface Area and Lateral Surface Area

$5.641896 \mathrm{~m}=\sqrt{\frac{1150 \mathrm{~m}^{2}-1050 \mathrm{~m}^{2}}{\pi}}$
5) Radius of Paraboloid given Volume

Open Calculator
ex $5.046265 \mathrm{~m}=\sqrt{\frac{2 \cdot 2000 \mathrm{~m}^{3}}{\pi \cdot 50 \mathrm{~m}}}$

Surface Area of Paraboloid 턴

6) Lateral Surface Area of Paraboloid
$\mathrm{fx} \mathrm{LSA}=\frac{\pi \cdot \mathrm{r}}{6 \cdot \mathrm{~h}^{2}} \cdot\left(\left(\mathrm{r}^{2}+4 \cdot \mathrm{~h}^{2}\right)^{\frac{3}{2}}-\mathrm{r}^{3}\right)$
Open Calculator
ex $1050.996 \mathrm{~m}^{2}=\frac{\pi \cdot 5 \mathrm{~m}}{6 \cdot(50 \mathrm{~m})^{2}} \cdot\left(\left((5 \mathrm{~m})^{2}+4 \cdot(50 \mathrm{~m})^{2}\right)^{\frac{3}{2}}-(5 \mathrm{~m})^{3}\right)$
7) Lateral Surface Area of Paraboloid given Height
$\mathrm{fx} \mathrm{LSA}=\frac{\pi}{6 \cdot \mathrm{p}^{2}} \cdot\left((1+4 \cdot \mathrm{~h} \cdot \mathrm{p})^{\frac{3}{2}}-1\right)$
ex $1050.996 \mathrm{~m}^{2}=\frac{\pi}{6 \cdot(2)^{2}} \cdot\left((1+4 \cdot 50 \mathrm{~m} \cdot 2)^{\frac{3}{2}}-1\right)$
8) Lateral Surface Area of Paraboloid given Total Surface Area
$f \mathrm{x} \mathrm{LSA}=\mathrm{TSA}-\pi \cdot \mathrm{r}^{2}$
ex $1071.46 \mathrm{~m}^{2}=1150 \mathrm{~m}^{2}-\pi \cdot(5 \mathrm{~m})^{2}$
9) Total Surface Area of Paraboloid
$\mathrm{fx} \mathrm{TSA}=\left(\frac{\pi \cdot \mathrm{r}}{6 \cdot \mathrm{~h}^{2}} \cdot\left(\left(\mathrm{r}^{2}+4 \cdot \mathrm{~h}^{2}\right)^{\frac{3}{2}}-\mathrm{r}^{3}\right)\right)+\pi \cdot \mathrm{r}^{2}$
Open Calculator

ex

$1129.536 \mathrm{~m}^{2}=\left(\frac{\pi \cdot 5 \mathrm{~m}}{6 \cdot(50 \mathrm{~m})^{2}} \cdot\left(\left((5 \mathrm{~m})^{2}+4 \cdot(50 \mathrm{~m})^{2}\right)^{\frac{3}{2}}-(5 \mathrm{~m})^{3}\right)\right)+\pi \cdot(5 \mathrm{~m})^{2}$
10) Total Surface Area of Paraboloid given Height
$\mathrm{fx} \mathrm{TSA}=\frac{\pi}{6 \cdot \mathrm{p}^{2}} \cdot\left((1+4 \cdot \mathrm{p} \cdot \mathrm{h})^{\frac{3}{2}}-1\right)+\frac{\pi \cdot \mathrm{h}}{\mathrm{p}}$
Open Calculator
ex $1129.536 \mathrm{~m}^{2}=\frac{\pi}{6 \cdot(2)^{2}} \cdot\left((1+4 \cdot 2 \cdot 50 \mathrm{~m})^{\frac{3}{2}}-1\right)+\frac{\pi \cdot 50 \mathrm{~m}}{2}$
11) Total Surface Area of Paraboloid given Lateral Surface Area
$f_{\mathrm{x}} \mathrm{TSA}=\mathrm{LSA}+\pi \cdot \mathrm{r}^{2}$
Open Calculator
ex $1128.54 \mathrm{~m}^{2}=1050 \mathrm{~m}^{2}+\pi \cdot(5 \mathrm{~m})^{2}$
12) Total Surface Area of Paraboloid given Radius
$f \mathrm{x} \operatorname{TSA}=\frac{\pi}{6 \cdot \mathrm{p}^{2}} \cdot\left(\left(1+4 \cdot \mathrm{p}^{2} \cdot \mathrm{r}^{2}\right)^{\frac{3}{2}}-1\right)+\left(\pi \cdot \mathrm{r}^{2}\right)$
$\mathbf{e x} 1129.536 \mathrm{~m}^{2}=\frac{\pi}{6 \cdot(2)^{2}} \cdot\left(\left(1+4 \cdot(2)^{2} \cdot(5 \mathrm{~m})^{2}\right)^{\frac{3}{2}}-1\right)+\left(\pi \cdot(5 \mathrm{~m})^{2}\right)$

Volume of Paraboloid ©

13) Volume of Paraboloid
$f \mathrm{x} V=\frac{1}{2} \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h}$
ex $1963.495 \mathrm{~m}^{3}=\frac{1}{2} \cdot \pi \cdot(5 \mathrm{~m})^{2} \cdot 50 \mathrm{~m}$
14) Volume of Paraboloid given Height
$\mathrm{fx} \mathrm{V}=\frac{1}{2} \cdot \frac{\pi \cdot \mathrm{~h}^{2}}{\mathrm{p}}$
ex $1963.495 \mathrm{~m}^{3}=\frac{1}{2} \cdot \frac{\pi \cdot(50 \mathrm{~m})^{2}}{2}$
15) Volume of Paraboloid given Lateral Surface Area
$f_{\mathrm{X}} \mathrm{V}=\frac{\pi}{32 \cdot \mathrm{p}^{3}} \cdot\left(\left(\frac{6 \cdot \mathrm{LSA} \cdot \mathrm{p}^{2}}{\pi}+1\right)^{\frac{2}{3}}-1\right)^{2}$
$\operatorname{ex} 1961.009 \mathrm{~m}^{3}=\frac{\pi}{32 \cdot(2)^{3}} \cdot\left(\left(\frac{6 \cdot 1050 \mathrm{~m}^{2} \cdot(2)^{2}}{\pi}+1\right)^{\frac{2}{3}}-1\right)^{2}$
16) Volume of Paraboloid given Radius
$f \mathrm{x} V=\frac{1}{2} \cdot \pi \cdot \mathrm{p} \cdot \mathrm{r}^{4}$
ex $1963.495 \mathrm{~m}^{3}=\frac{1}{2} \cdot \pi \cdot 2 \cdot(5 \mathrm{~m})^{4}$

Variables Used

- h Height of Paraboloid (Meter)
- LSA Lateral Surface Area of Paraboloid (Square Meter)
- p Shape Parameter of Paraboloid
- r Radius of Paraboloid (Meter)
- TSA Total Surface Area of Paraboloid (Square Meter)
- V Volume of Paraboloid (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas $\sqrt{ }$
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas Ξ
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas \longleftarrow
- Great Icosahedron Formulas
- Great Stellated Dodecahedron Formulas
- Half Cylinder Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Hemisphere Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas $\sqrt{5}$
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas
- Skewed Three Edged Prism Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas
- Spherical Zone Formulas
- Square Pillar Formulas
- Star Pyramid Formulas
- Stellated Octahedron Formulas
- Toroid Formulas
- Trirectangular Tetrahedron Formulas
- Truncated Rhombohedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

