Important Formulas of Parallelepiped

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here..

List of 16 Important Formulas of Parallelepiped

Important Formulas of Parallelepiped

Angle of Parallelepiped ©

1) Angle Alpha of Parallelepiped
$f \mathbf{f x} \angle \alpha=a \sin \left(\frac{\mathrm{TSA}-\left(2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{b}} \cdot \sin (\angle \gamma)\right)-\left(2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \beta)\right)}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{b}}}\right)$
ex $44.68305^{\circ}=a \sin \left(\frac{1960 \mathrm{~m}^{2}-\left(2 \cdot 30 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \sin \left(75^{\circ}\right)\right)-\left(2 \cdot 30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)\right)}{2 \cdot 10 \mathrm{~m} \cdot 20 \mathrm{~m}}\right)$
2) Angle Beta of Parallelepiped
fx $\angle \beta=a \sin \left(\frac{\text { TSA }-\left(2 \cdot S_{a} \cdot S_{b} \cdot \sin (\angle \gamma)\right)-\left(2 \cdot S_{b} \cdot S_{c} \cdot \sin (\angle \alpha)\right)}{2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}}}\right)$
ex $59.7017^{\circ}=a \sin \left(\frac{1960 \mathrm{~m}^{2}-\left(2 \cdot 30 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \sin \left(75^{\circ}\right)\right)-\left(2 \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)\right)}{2 \cdot 30 \mathrm{~m} \cdot 10 \mathrm{~m}}\right)$
3) Angle Gamma of Parallelepiped
$\mathrm{fx} \angle \gamma=a \sin \left(\frac{\mathrm{TSA}-\left(2 \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \alpha)\right)-\left(2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \beta)\right)}{2 \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{a}}}\right)$
ex $74.71324^{\circ}=a \sin \left(\frac{1960 \mathrm{~m}^{2}-\left(2 \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)\right)-\left(2 \cdot 30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)\right)}{2 \cdot 20 \mathrm{~m} \cdot 30 \mathrm{~m}}\right)$

Perimeter of Parallelepiped

4) Perimeter of Parallelepiped
$f \mathrm{fx}=4 \cdot\left(\mathrm{~S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right)$
ex $240 \mathrm{~m}=4 \cdot(30 \mathrm{~m}+20 \mathrm{~m}+10 \mathrm{~m})$

Side of Parallelepiped ©

5) Side A of Parallelepiped $\boxed{\square}$
$S_{a}=\frac{\mathrm{V}}{S_{b} \cdot S_{c} \cdot \sqrt{1+(2 \cdot \cos (\angle \alpha) \cdot \cos (\angle \beta) \cdot \cos (\angle \gamma))-\left(\cos (\angle \alpha)^{2}+\cos (\angle \beta)^{2}+\cos (\angle \gamma)^{2}\right)}}$
ex
$29.99998 \mathrm{~m}=\frac{3630 \mathrm{~m}^{3}}{20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sqrt{1+\left(2 \cdot \cos \left(45^{\circ}\right) \cdot \cos \left(60^{\circ}\right) \cdot \cos \left(75^{\circ}\right)\right)-\left(\cos \left(45^{\circ}\right)^{2}+\cos \left(60^{\circ}\right)^{2}+\cos \left(75^{\circ}\right)^{2}\right)}}$
6) Side A of Parallelepiped given Total Surface Area and Lateral Surface Area
f. $\mathrm{S}_{\mathrm{a}}=\frac{\text { TSA }-\mathrm{LSA}}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \sin (\angle \beta)}$
ex $30.02221 \mathrm{~m}=\frac{1960 \mathrm{~m}^{2}-1440 \mathrm{~m}^{2}}{2 \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)}$
7) Side B of Parallelepiped

fx

$\mathrm{S}_{\mathrm{b}}=\frac{\mathrm{V}}{\mathrm{S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sqrt{1+(2 \cdot \cos (\angle \alpha) \cdot \cos (\angle \beta) \cdot \cos (\angle \gamma))-\left(\cos (\angle \alpha)^{2}+\cos (\angle \beta)^{2}+\cos (\angle \gamma)^{2}\right)}}$
ex
$19.99999 \mathrm{~m}=$

$3630 \mathrm{~m}^{3}$

$30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sqrt{1+\left(2 \cdot \cos \left(45^{\circ}\right) \cdot \cos \left(60^{\circ}\right) \cdot \cos \left(75^{\circ}\right)\right)-\left(\cos \left(45^{\circ}\right)^{2}+\cos \left(60^{\circ}\right)^{2}+\cos \left(75^{\circ}\right)^{2}\right)}$
8) Side B of Parallelepiped given Lateral Surface Area
$f \mathrm{f} \mathrm{S}_{\mathrm{b}}=\frac{\mathrm{LSA}}{2 \cdot\left(\mathrm{~S}_{\mathrm{a}} \cdot \sin (\angle \gamma)+\mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \alpha)\right)}$
ex $19.9729 \mathrm{~m}=\frac{1440 \mathrm{~m}^{2}}{2 \cdot\left(30 \mathrm{~m} \cdot \sin \left(75^{\circ}\right)+10 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)\right)}$
9) Side C of Parallelepiped
$S_{c}=\frac{\mathrm{V}}{\mathrm{S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{a}} \cdot \sqrt{1+(2 \cdot \cos (\angle \alpha) \cdot \cos (\angle \beta) \cdot \cos (\angle \gamma))-\left(\cos (\angle \alpha)^{2}+\cos (\angle \beta)^{2}+\cos (\angle \gamma)^{2}\right)}}$
ex
$9.999994 \mathrm{~m}=$

$3630 \mathrm{~m}^{3}$

$20 \mathrm{~m} \cdot 30 \mathrm{~m} \cdot \sqrt{1+\left(2 \cdot \cos \left(45^{\circ}\right) \cdot \cos \left(60^{\circ}\right) \cdot \cos \left(75^{\circ}\right)\right)-\left(\cos \left(45^{\circ}\right)^{2}+\cos \left(60^{\circ}\right)^{2}+\cos \left(75^{\circ}\right)^{2}\right)}$
10) Side C of Parallelepiped given Total Surface Area and Lateral Surface Area
$f \times \mathrm{S}_{\mathrm{c}}=\frac{\mathrm{TSA}-\mathrm{LSA}}{2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \sin (\angle \beta)}$
Open Calculator
ex $10.0074 \mathrm{~m}=\frac{1960 \mathrm{~m}^{2}-1440 \mathrm{~m}^{2}}{2 \cdot 30 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)}$

Surface Area of Parallelepiped

11) Lateral Surface Area of Parallelepiped
fx $\mathrm{LSA}=2 \cdot\left(\left(\mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{b}} \cdot \sin (\angle \gamma)\right)+\left(\mathrm{S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \alpha)\right)\right)$
Open Calculator
ex $1441.954 \mathrm{~m}^{2}=2 \cdot\left(\left(30 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \sin \left(75^{\circ}\right)\right)+\left(20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)\right)\right)$
12) Lateral Surface Area of Parallelepiped given Total Surface Area
fx $\mathrm{LSA}=\mathrm{TSA}-2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \beta)$
ex $1440.385 \mathrm{~m}^{2}=1960 \mathrm{~m}^{2}-2 \cdot 30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)$
13) Total Surface Area of Parallelepiped
f* TSA $=2 \cdot\left(\left(\mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{b}} \cdot \sin (\angle \gamma)\right)+\left(\mathrm{S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \beta)\right)+\left(\mathrm{S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \alpha)\right)\right)$
ex $1961.569 \mathrm{~m}^{2}=2 \cdot\left(\left(30 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \sin \left(75^{\circ}\right)\right)+\left(30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)\right)+\left(20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(45^{\circ}\right)\right)\right)$
14) Total Surface Area of Parallelepiped given Lateral Surface Area
fx TSA $=\mathrm{LSA}+2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \sin (\angle \beta)$
ex $1959.615 \mathrm{~m}^{2}=1440 \mathrm{~m}^{2}+2 \cdot 30 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sin \left(60^{\circ}\right)$

Volume of Parallelepiped

15) Volume of Parallelepiped

$$
\mathrm{V}=\mathrm{S}_{\mathrm{a}} \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{~S}_{\mathrm{c}} \cdot \sqrt{1+(2 \cdot \cos (\angle \alpha) \cdot \cos (\angle \beta) \cdot \cos (\angle \gamma))-\left(\cos (\angle \alpha)^{2}+\cos (\angle \beta)^{2}+\cos (\angle \gamma)^{2}\right)}
$$

ex
$3630.002 \mathrm{~m}^{3}=30 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m} \cdot \sqrt{1+\left(2 \cdot \cos \left(45^{\circ}\right) \cdot \cos \left(60^{\circ}\right) \cdot \cos \left(75^{\circ}\right)\right)-\left(\cos \left(45^{\circ}\right)^{2}+\cos \left(60^{\circ}\right)^{2}+\cos \left(75^{\circ}\right)^{\circ}\right.}$
16) Volume of Parallelepiped given Total Surface Area and Lateral Surface Area
$\mathrm{V}=\frac{1}{2} \cdot \frac{\mathrm{TSA}-\mathrm{LSA}}{\sin (\angle \beta)} \cdot \mathrm{S}_{\mathrm{b}} \cdot \sqrt{1+(2 \cdot \cos (\angle \alpha) \cdot \cos (\angle \beta) \cdot \cos (\angle \gamma))-\left(\cos (\angle \alpha)^{2}+\cos (\angle \beta)^{2}+\right.}$
ex
$3632.69 \mathrm{~m}^{3}=\frac{1}{2} \cdot \frac{1960 \mathrm{~m}^{2}-1440 \mathrm{~m}^{2}}{\sin \left(60^{\circ}\right)} \cdot 20 \mathrm{~m} \cdot \sqrt{1+\left(2 \cdot \cos \left(45^{\circ}\right) \cdot \cos \left(60^{\circ}\right) \cdot \cos \left(75^{\circ}\right)\right)-\left(\cos \left(45^{\circ}\right)^{2}+\cos \left(60^{\circ}\right)^{2}\right.}$

Variables Used

- $\angle \alpha$ Angle Alpha of Parallelepiped (Degree)
- $\angle \beta$ Angle Beta of Parallelepiped (Degree)
- \angle Y Angle Gamma of Parallelepiped (Degree)
- LSA Lateral Surface Area of Parallelepiped (Square Meter)
- P Perimeter of Parallelepiped (Meter)
- S_{a} Side A of Parallelepiped (Meter)
- S_{b} Side B of Parallelepiped (Meter)
- $\mathbf{S}_{\mathbf{c}}$ Side C of Parallelepiped (Meter)
- TSA Total Surface Area of Parallelepiped (Square Meter)
- V Volume of Parallelepiped (Cubic Meter)

Constants, Functions, Measurements used

- Function: asin, asin(Number)

Inverse trigonometric sine function

- Function: cos, $\cos ($ Angle)

Trigonometric cosine function

- Function: sin, sin(Angle)

Trigonometric sine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

－Anticube Formulas
－Antiprism Formulas
－Barrel Formulas
－Bent Cuboid Formulas
－Bicone Formulas
－Capsule Formulas
－Circular Hyperboloid Formulas
－Cuboctahedron Formulas
－Cut Cylinder Formulas
－Cut Cylindrical Shell Formulas
－Cylinder Formulas
－Cylindrical Shell Formulas
－Diagonally Halved Cylinder Formulas
－Disphenoid Formulas $\sqrt{ }$
－Double Calotte Formulas
－Double Point Formulas
－Ellipsoid Formulas
－Elliptic Cylinder Formulasひ
－Elongated Dodecahedron Formulas
－Flat End Cylinder Formulas
－Frustum of Cone Formulas
－Great Dodecahedron Formulas
－Great Icosahedron Formulas
－Great Stellated Dodecahedron Formulas 【
－Half Cylinder Formulas
－Half Tetrahedron Formulas
－Hemisphere Formulas
－Hollow Cuboid Formulas
－Hollow Cylinder Formulas
－Hollow Frustum Formulas
－Hollow Hemisphere Formulas
－Hollow Pyramid Formulas
G
－Hollow Sphere Formulas
－Ingot Formulas
－Obelisk Formulas
－Oblique Cylinder Formulas
－Oblique Prism Formulas
－Obtuse Edged Cuboid Formulas
－Oloid Formulas
－Paraboloid Formulas
－Parallelepiped Formulas
－Prismatoid Formulas
－Ramp Formulas
－Regular Bipyramid Formulas
－Rhombohedron Formulas
－Right Wedge Formulas
－Semi Ellipsoid Formulas
－Sharp Bent Cylinder Formulas
－Skewed Three Edged Prism Formulas
－Small Stellated Dodecahedron Formulas
－Solid of Revolution Formulas
－Sphere Formulas
－Spherical Cap Formulas凹
－Spherical Corner Formulas
－Spherical Ring Formulas
－Spherical Sector Formulas
－Spherical Segment Formulas
－Spherical Wedge Formulas
－Spherical Zone Formulas
－Square Pillar Formulas
－Star Pyramid Formulas
－Stellated Octahedron Formulas $\mathbb{\boxed { }}$
－Toroid Formulas
－Torus Formulas
－Trirectangular Tetrahedron Formulas
－Truncated Rhombohedron Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

