unitsconverters.com

Important Formulas of Toroid and Toroid Sector

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Important Formulas of Toroid and Toroid Sector

Important Formulas of Toroid and Toroid Sector ©

Total Surface Area of Toroid

1) Total Surface Area of Toroid
fx TSA $=\left(2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{P}_{\text {Cross Section }}\right)$
ex $1884.956 \mathrm{~m}^{2}=(2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 30 \mathrm{~m})$
2) Total Surface Area of Toroid given Volume
$f \mathbf{x S A}=\left(2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}\right) \cdot\left(\frac{\mathrm{V}}{2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}}\right)$
ex $1890 \mathrm{~m}^{2}=(2 \cdot \pi \cdot 30 \mathrm{~m}) \cdot\left(\frac{3150 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 50 \mathrm{~m}^{2}}\right)$

Volume of Toroid

3) Volume of Toroid
$f \mathbf{f} \mathrm{~V}=\left(2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{A}_{\text {Cross Section }}\right)$
ex $3141.593 \mathrm{~m}^{3}=\left(2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 50 \mathrm{~m}^{2}\right)$
4) Volume of Toroid given Total Surface Area
$\mathrm{f}_{\mathrm{x}} \mathrm{V}=\left(2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}\right) \cdot\left(\frac{\mathrm{TSA}}{2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}}\right)$
ex $3166.667 \mathrm{~m}^{3}=\left(2 \cdot \pi \cdot 50 \mathrm{~m}^{2}\right) \cdot\left(\frac{1900 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 30 \mathrm{~m}}\right)$

Cross Sectional Area of Toroid ©

5) Cross Sectional Area of Toroid
$\mathrm{A}_{\mathrm{Cross} \text { Section }}=\left(\frac{\mathrm{V}}{2 \cdot \pi \cdot \mathrm{r}}\right)$
ex $50.13381 \mathrm{~m}^{2}=\left(\frac{3150 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 10 \mathrm{~m}}\right)$
6) Cross Sectional Area of Toroid given Volume and Total Surface Area
$f \mathrm{fx} \mathrm{A}_{\text {Cross Section }}=\left(\frac{\mathrm{V}}{2 \cdot \pi \cdot\left(\frac{\mathrm{TSA}}{2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}}\right)}\right)$
ex $49.73684 \mathrm{~m}^{2}=\left(\frac{3150 \mathrm{~m}^{3}}{2 \cdot \pi \cdot\left(\frac{1900 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 30 \mathrm{~m}}\right)}\right)$

Cross Sectional Perimeter of Toroid

7) Cross Sectional Perimeter of Toroid $\sqrt{ }$
$f \times \mathrm{P}_{\text {Cross Section }}=\left(\frac{\mathrm{TSA}}{2 \cdot \pi \cdot \mathrm{r}}\right)$
ex $30.23944 \mathrm{~m}=\left(\frac{1900 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 10 \mathrm{~m}}\right)$
8) Cross Sectional Perimeter of Toroid given Total Surface Area and Volume
$f \mathrm{fx} \mathrm{P}_{\text {Cross Section }}=\left(\frac{\mathrm{TSA}}{2 \cdot \pi \cdot\left(\frac{\mathrm{~V}}{2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}}\right)}\right)$
ex $30.15873 \mathrm{~m}=\left(\frac{1900 \mathrm{~m}^{2}}{2 \cdot \pi \cdot\left(\frac{3150 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 50 \mathrm{~m}^{2}}\right)}\right)$

Radius of Toroid

9) Radius of Toroid
$\mathrm{fx} \mathrm{r}=\left(\frac{\text { TSA }}{2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}}\right)$
ex $10.07981 \mathrm{~m}=\left(\frac{1900 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 30 \mathrm{~m}}\right)$
10) Radius of Toroid given Volume
$\mathrm{fx}=\left(\frac{\mathrm{V}}{2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}}\right)$
ex $10.02676 \mathrm{~m}=\left(\frac{3150 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 50 \mathrm{~m}^{2}}\right)$

Toroid Sector

11) Cross Sectional Area of Toroid given Total Surface Area of Toroid Sector
$f x$
$\mathrm{A}_{\text {Cross Section }}=\left(\frac{\mathrm{TSA}_{\text {Sector }}-\left(2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{P}_{\text {Cross Section }} \cdot\left(\frac{L_{\text {Intersection }}}{2 \cdot \pi}\right)\right)}{2}\right)$
ex $53.7611 \mathrm{~m}^{2}=\left(\frac{1050 \mathrm{~m}^{2}-\left(2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 30 \mathrm{~m} \cdot\left(\frac{180^{\circ}}{2 \cdot \pi}\right)\right)}{2}\right)$
12) Cross Sectional Area of Toroid given Volume of Toroid Sector
$f \times \mathrm{A}_{\text {Cross Section }}=\left(\frac{\mathrm{V}_{\text {Sector }}}{2 \cdot \pi \cdot \mathrm{r} \cdot\left(\frac{L_{\text {Intersection }}}{2 \cdot \pi}\right)}\right)$
ex $49.97465 \mathrm{~m}^{2}=\left(\frac{1570 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 10 \mathrm{~m} \cdot\left(\frac{180^{\circ}}{2 \cdot \pi}\right)}\right)$
13) Cross Sectional Perimeter of Toroid given Total Surface Area of Toroid Sector
f. $\mathrm{P}_{\text {Cross Section }}=\frac{\mathrm{TSA}_{\text {Sector }}-\left(2 \cdot \mathrm{~A}_{\text {Cross Section }}\right)}{2 \cdot \pi \cdot \mathrm{r} \cdot\left(\frac{L_{\text {Intersection }}}{2 \cdot \pi}\right)}$
ex $30.23944 \mathrm{~m}=\frac{1050 \mathrm{~m}^{2}-\left(2 \cdot 50 \mathrm{~m}^{2}\right)}{2 \cdot \pi \cdot 10 \mathrm{~m} \cdot\left(\frac{180^{\circ}}{2 \cdot \pi}\right)}$
14) Total Surface Area of Toroid Sector
$f x$
$\mathrm{TSA}_{\text {Sector }}=\left(\left(2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{P}_{\text {Cross Section }}\right) \cdot\left(\frac{\angle_{\text {Intersection }}}{2 \cdot \pi}\right)\right)+\left(2 \cdot \mathrm{~A}_{\text {Cross Section }}\right)$
ex $1042.478 \mathrm{~m}^{2}=\left((2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 30 \mathrm{~m}) \cdot\left(\frac{180^{\circ}}{2 \cdot \pi}\right)\right)+\left(2 \cdot 50 \mathrm{~m}^{2}\right)$
15) Total Surface Area of Toroid Sector given Volume
$\operatorname{TSA}_{\text {Sector }}=\left(\left(2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}\right) \cdot\left(\left(\frac{\mathrm{V}_{\text {Sector }}}{2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}}\right)\right)\right)+\left(2 \cdot \mathrm{~A}_{\text {Cross Section }}\right)$
ex $1042 \mathrm{~m}^{2}=\left((2 \cdot \pi \cdot 30 \mathrm{~m}) \cdot\left(\left(\frac{1570 \mathrm{~m}^{3}}{2 \cdot \pi \cdot 50 \mathrm{~m}^{2}}\right)\right)\right)+\left(2 \cdot 50 \mathrm{~m}^{2}\right)$
16) Volume of Toroid Sector
$\mathrm{fx} \mathrm{V}_{\text {Sector }}=\left(2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{A}_{\text {Cross Section }}\right) \cdot\left(\frac{\angle_{\text {Intersection }}}{2 \cdot \pi}\right)$
ex $1570.796 \mathrm{~m}^{3}=\left(2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 50 \mathrm{~m}^{2}\right) \cdot\left(\frac{180^{\circ}}{2 \cdot \pi}\right)$
17) Volume of Toroid Sector given Total Surface Area
$f x$
$\mathrm{V}_{\text {Sector }}=\left(2 \cdot \pi \cdot \mathrm{~A}_{\text {Cross Section }}\right) \cdot\left(\left(\frac{\mathrm{TSA}_{\text {Sector }}-\left(2 \cdot \mathrm{~A}_{\text {Cross Section }}\right)}{2 \cdot \pi \cdot \mathrm{P}_{\text {Cross Section }}}\right)\right)$
ex $1583.333 \mathrm{~m}^{3}=\left(2 \cdot \pi \cdot 50 \mathrm{~m}^{2}\right) \cdot\left(\left(\frac{1050 \mathrm{~m}^{2}-\left(2 \cdot 50 \mathrm{~m}^{2}\right)}{2 \cdot \pi \cdot 30 \mathrm{~m}}\right)\right)$

Variables Used

- LIntersection Angle of Intersection of Toroid Sector (Degree)
- ACross Section Cross Sectional Area of Toroid (Square Meter)
- PCross Section Cross Sectional Perimeter of Toroid (Meter)
- r Radius of Toroid (Meter)
- TSA Total Surface Area of Toroid (Square Meter)
- TSA Sector Total Surface Area of Toroid Sector (Square Meter)
- V Volume of Toroid (Cubic Meter)
- $\mathbf{V}_{\text {Sector }}$ Volume of Toroid Sector (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$ Volume Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas

- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas

凹

- Great Icosahedron Formulas
- Great Stellated Dodecahedron Formulas
- Half Cylinder Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Hemisphere Formulas
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas
- Skewed Three Edged Prism Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas
- Spherical Wedge Formulas
- Spherical Zone Formulas
- Square Pillar Formulas
- Star Pyramid Formulas
- Stellated Octahedron Formulas
- Toroid Formulas
- Torus Formulas
- Trirectangular Tetrahedron Formulas
- Truncated Rhombohedron Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

