calculatoratoz.com

Important Formulas of Hollow Cylinder

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Important Formulas of Hollow Cylinder

Important Formulas of Hollow Cylinder ©

Height of Hollow Cylinder ©

1) Height of Hollow Cylinder
fx $h=\frac{\text { CSA }_{\text {Inner }}}{2 \cdot \pi \cdot r_{\text {Inner }}}$
ex $7.957747 \mathrm{~m}=\frac{300 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 6 \mathrm{~m}}$
2) Height of Hollow Cylinder given Total Surface Area
$\mathrm{fx} \mathrm{h}=\frac{\mathrm{TSA}}{2 \cdot \pi \cdot\left(\mathrm{r}_{\text {Inner }}+\mathrm{r}_{\text {Outer }}\right)}-\mathrm{r}_{\text {Outer }}+\mathrm{r}_{\text {Inner }}$
ex $7.936621 \mathrm{~m}=\frac{1200 \mathrm{~m}^{2}}{2 \cdot \pi \cdot(6 \mathrm{~m}+10 \mathrm{~m})}-10 \mathrm{~m}+6 \mathrm{~m}$
Open Calculator
3) Height of Hollow Cylinder given Volume
$f \times \mathrm{h}_{\mathrm{h}=\frac{\mathrm{V}}{\pi \cdot\left(\mathrm{r}_{\text {Outer }}^{2}-\mathrm{r}_{\text {Inner }}^{2}\right)}}^{\mathbf{e x} 7.957747 \mathrm{~m}=\frac{1600 \mathrm{~m}^{3}}{\pi \cdot\left((10 \mathrm{~m})^{2}-(6 \mathrm{~m})^{2}\right)}}$

Radius of Hollow Cylinder ©

4) Inner Radius of Hollow Cylinder
$\mathrm{fx} \mathrm{r}_{\text {Inner }}=\frac{\mathrm{CSA}_{\text {Inner }}}{2 \cdot \pi \cdot \mathrm{~h}}$
ex $5.96831 \mathrm{~m}=\frac{300 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 8 \mathrm{~m}}$
5) Outer Radius of Hollow Cylinder

$$
\mathrm{fx} \mathrm{r}_{\text {Outer }}=\frac{\mathrm{CSA}_{\text {Outer }}}{2 \cdot \pi \cdot \mathrm{~h}}
$$

ex $9.947184 \mathrm{~m}=\frac{500 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 8 \mathrm{~m}}$

Surface Area of Hollow Cylinder

6) Inner Curved Surface Area of Hollow Cylinder
$\mathrm{fx} \mathrm{CSA}_{\text {Inner }}=2 \cdot \pi \cdot \mathrm{r}_{\text {Inner }} \cdot \mathrm{h}$
$301.5929 \mathrm{~m}^{2}=2 \cdot \pi \cdot 6 \mathrm{~m} \cdot 8 \mathrm{~m}$
7) Outer Curved Surface Area of Hollow Cylinder
$\mathrm{fx}_{\mathrm{x}} \mathrm{CSA}_{\text {Outer }}=2 \cdot \pi \cdot \mathrm{r}_{\text {Outer }} \cdot \mathrm{h}$
ex $502.6548 \mathrm{~m}^{2}=2 \cdot \pi \cdot 10 \mathrm{~m} \cdot 8 \mathrm{~m}$
8) Total Curved Surface Area of Hollow Cylinder
$f \mathrm{fx} \mathrm{CSA}_{\text {Total }}=2 \cdot \pi \cdot \mathrm{~h} \cdot\left(\mathrm{r}_{\text {Inner }}+\mathrm{r}_{\text {Outer }}\right)$
Open Calculator
ex $804.2477 \mathrm{~m}^{2}=2 \cdot \pi \cdot 8 \mathrm{~m} \cdot(6 \mathrm{~m}+10 \mathrm{~m})$
9) Total Surface Area of Hollow Cylinder
$f_{\mathrm{x}} \mathrm{TSA}=2 \cdot \pi \cdot\left(\mathrm{r}_{\text {Inner }}+\mathrm{r}_{\text {Outer }}\right) \cdot\left(\mathrm{r}_{\text {Outer }}-\mathrm{r}_{\text {Inner }}+\mathrm{h}\right) \quad$ Open Calculator E
ex $1206.372 \mathrm{~m}^{2}=2 \cdot \pi \cdot(6 \mathrm{~m}+10 \mathrm{~m}) \cdot(10 \mathrm{~m}-6 \mathrm{~m}+8 \mathrm{~m})$
10) Total Surface Area of Hollow Cylinder given Wall Thickness and Inner Radius
$\mathrm{fx}_{\mathrm{x}} \mathrm{TSA}=2 \cdot \pi \cdot\left(\mathrm{t}_{\text {Wall }}+\left(2 \cdot \mathrm{r}_{\text {Inner }}\right)\right) \cdot\left(\mathrm{t}_{\text {Wall }}+\mathrm{h}\right)$
Open Calculator
ex $1206.372 \mathrm{~m}^{2}=2 \cdot \pi \cdot(4 \mathrm{~m}+(2 \cdot 6 \mathrm{~m})) \cdot(4 \mathrm{~m}+8 \mathrm{~m})$

Volume of Hollow Cylinder ©

11) Volume of Hollow Cylinder
$\mathrm{fx} \mathrm{V}=\pi \cdot \mathrm{h} \cdot\left(\mathrm{r}_{\text {Outer }}^{2}-\mathrm{r}_{\text {Inner }}^{2}\right)$
Open Calculator 〔
ex $1608.495 \mathrm{~m}^{3}=\pi \cdot 8 \mathrm{~m} \cdot\left((10 \mathrm{~m})^{2}-(6 \mathrm{~m})^{2}\right)$
12) Volume of Hollow Cylinder given Total Surface Area

$$
\mathrm{V}=\pi \cdot\left(\frac{\mathrm{TSA}}{2 \cdot \pi \cdot\left(\mathrm{r}_{\text {Inner }}+\mathrm{r}_{\text {Outer }}\right)}-\mathrm{r}_{\text {Outer }}+\mathrm{r}_{\text {Inner }}\right) \cdot\left(\mathrm{r}_{\text {Outer }}^{2}-\mathrm{r}_{\text {Inner }}^{2}\right)
$$

ex $1595.752 \mathrm{~m}^{3}=\pi \cdot\left(\frac{1200 \mathrm{~m}^{2}}{2 \cdot \pi \cdot(6 \mathrm{~m}+10 \mathrm{~m})}-10 \mathrm{~m}+6 \mathrm{~m}\right) \cdot\left((10 \mathrm{~m})^{2}-(6 \mathrm{~m})^{2}\right)$
13) Volume of Hollow Cylinder given Wall Thickness and Outer Radius
$f \mathrm{f} \mathrm{V}=\pi \cdot \mathrm{h} \cdot\left(\mathrm{r}_{\text {Outer }}^{2}-\left(\mathrm{r}_{\text {Outer }}-\mathrm{t}_{\text {Wall }}\right)^{2}\right)$
ex $1608.495 \mathrm{~m}^{3}=\pi \cdot 8 \mathrm{~m} \cdot\left((10 \mathrm{~m})^{2}-(10 \mathrm{~m}-4 \mathrm{~m})^{2}\right)$

Wall Thickness of Hollow Cylinder ©

14) Wall Thickness of Hollow Cylinder
$f \times t_{\text {Wall }}=r_{\text {Outer }}-r_{\text {Inner }}$
ex $4 m=10 m-6 m$
15) Wall Thickness of Hollow Cylinder given Total Curved Surface Area and Inner Radius

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{\text {Wall }}=\frac{\mathrm{CSA}_{\text {Total }}}{2 \cdot \pi \cdot \mathrm{~h}}-\left(2 \cdot \mathrm{r}_{\text {Inner }}\right)
$$

ex $3.915494 \mathrm{~m}=\frac{800 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 8 \mathrm{~m}}-(2 \cdot 6 \mathrm{~m})$
16) Wall Thickness of Hollow Cylinder given Volume and Inner Radius
$f \mathrm{fx} \mathrm{t}_{\text {Wall }}=\sqrt{\frac{\mathrm{V}}{\pi \cdot \mathrm{h}}+\mathrm{r}_{\text {Inner }}^{2}}-\mathrm{r}_{\text {Inner }}$
ex $3.983085 \mathrm{~m}=\sqrt{\frac{1600 \mathrm{~m}^{3}}{\pi \cdot 8 m}+(6 \mathrm{~m})^{2}}-6 \mathrm{~m}$

Variables Used

- CSA ${ }_{\text {Inner }}$ Inner Curved Surface Area of Hollow Cylinder (Square Meter)
- CSA Outer Outer Curved Surface Area of Hollow Cylinder (Square Meter)
- CSA $_{\text {Total }}$ Total Curved Surface Area of Hollow Cylinder (Square Meter)
- \mathbf{h} Height of Hollow Cylinder (Meter)
- $\mathbf{r}_{\text {Inner }}$ Inner Radius of Hollow Cylinder (Meter)
- $\mathbf{r}_{\text {Outer }}$ Outer Radius of Hollow Cylinder (Meter)
- $t_{\text {Wall }}$ Wall Thickness of Hollow Cylinder (Meter)
- TSA Total Surface Area of Hollow Cylinder (Square Meter)
- V Volume of Hollow Cylinder (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

Check other formula lists

- Anticube Formulas
- Antiprism Formulas
- Barrel Formulas
- Bent Cuboid Formulas
- Bicone Formulas
- Capsule Formulas
- Circular Hyperboloid Formulas
- Cuboctahedron Formulas
- Cut Cylinder Formulas
- Cut Cylindrical Shell Formulas
- Cylinder Formulas
- Cylindrical Shell Formulas
- Diagonally Halved Cylinder Formulas
- Disphenoid Formulas
- Double Calotte Formulas
- Double Point Formulas
- Ellipsoid Formulas
- Elliptic Cylinder Formulas
- Elongated Dodecahedron Formulas
- Flat End Cylinder Formulas
- Frustum of Cone Formulas
- Great Dodecahedron Formulas
- Great Icosahedron Formulas
- Great Stellated Dodecahedron Formulas
- Half Cylinder Formulas
- Half Tetrahedron Formulas
- Hemisphere Formulas
- Hollow Cuboid Formulas
- Hollow Cylinder Formulas
- Hollow Frustum Formulas
- Hollow Hemisphere Formulas $\sqrt{ }$
- Hollow Pyramid Formulas
- Hollow Sphere Formulas
- Ingot Formulas $\sqrt{ }$
- Obelisk Formulas
- Oblique Cylinder Formulas
- Oblique Prism Formulas
- Obtuse Edged Cuboid Formulas
- Oloid Formulas
- Paraboloid Formulas
- Parallelepiped Formulas
- Prismatoid Formulas
- Ramp Formulas
- Regular Bipyramid Formulas
- Rhombohedron Formulas
- Right Wedge Formulas
- Semi Ellipsoid Formulas
- Sharp Bent Cylinder Formulas
- Skewed Three Edged Prism Formulas
- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas
- Sphere Formulas
- Spherical Cap Formulas \mathbb{Z}
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas $\sqrt{ }$
- Spherical Segment Formulas
- Spherical Wedge Formulas Ξ
- Spherical Zone Formulas
- Square Pillar Formulas
- Star Pyramid Formulas
- Stellated Octahedron Formulas
- Toroid Formulas
- Torus Formulas
- Trirectangular Tetrahedron Formulas
- Truncated Rhombohedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

