

Hydrodynamics of Tidal Inlets-2 Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Hydrodynamics of Tidal Inlets-2 Formulas

Hydrodynamics of Tidal Inlets-2 🕑

Hydrodynamic and Sediment Interaction at Tidal Inlets C

Tidal Dispersion and Mixing 🕑

1) Average Volume of Bay over Tidal Cycle given Residence Time 🗹

$$179.2 \text{m}^3/\text{hr} = \frac{16 \text{Year} \cdot 0.7 \cdot 32 \text{m}^3}{2 \text{Year}}$$

2) Fraction of New Water Entering Bay from Sea each Tidal Cycle given Residence Time

fx
$$\varepsilon = \frac{V \cdot T}{P \cdot T_r}$$

ex $0.703125 = \frac{180 \text{m}^3/\text{hr} \cdot 2 \text{Year}}{32 \text{m}^3 \cdot 16 \text{Year}}$

Open Calculator

$$32.14286 \mathrm{m}^3 = rac{24 \mathrm{ear} \cdot 180 \mathrm{m}^3 / \mathrm{m}^3}{16 \mathrm{Year} \cdot 0.7}$$

Tidal Prism 🕑

6) Average Area over Channel Length given Tidal Prism 💪

7) Average Area over Channel Length given Tidal Prism of Non-Sinusoidal Prototype Flow

9) Hydraulic Radius of Entire Cross-Section 🕑

$$\label{eq:rho} \boxed{\mathbf{f_X}} \mathbf{r}_{H} = \mathbf{D} \cdot \left(\frac{V_{avg}}{V_{meas}} \right)^{\frac{3}{2}}$$
 Open Calculator
$$\boxed{\mathbf{Open Calculator}}$$

10) Maximum Cross-Sectionally Averaged Velocity during Tidal Cycle given Tidal Prism

fx
$$V_{m} = \frac{P \cdot \pi}{T \cdot A_{avg}}$$

ex $6.283185 \text{m/s} = \frac{32 \text{m}^{3} \cdot \pi}{2 \text{Year} \cdot 8 \text{m}^{2}}$

 $^{\prime}$ 2Year \cdot 8m²

11) Maximum Cross-Sectionally Averaged Velocity given Tidal Prism of Non-sinusoidal Prototype Flow

fx
$$V_m = \frac{P \cdot \pi \cdot C}{T \cdot A_{avg}}$$

ex $6.346017 \text{m/s} = \frac{32 \text{m}^3 \cdot \pi \cdot 1.01}{2 \text{Year} \cdot 8 \text{m}^2}$

12) Maximum Ebb Tide Discharge Accounting for Non-Sinusoidal Character of Prototype Flow by Keulegan

ex
$$50.26548 \mathrm{m^3/s} = 32 \mathrm{m^3} \cdot rac{\pi}{2 \mathrm{Year}}$$

fx $V_{\mathrm{avg}} = V_{\mathrm{meas}} \cdot \left(rac{\mathbf{r}_{\mathrm{H}}}{\mathrm{D}}
ight)^{rac{2}{3}}$

14) Maximum Velocity Averaged over Entire Cross-Section

ex
$$3.000262 \mathrm{m/s} = 25.34 \mathrm{m/s} \cdot \left(rac{0.33 \mathrm{m}}{8.1 \mathrm{m}}
ight)^{rac{2}{3}}$$

15) Point Measurement of Maximum Velocity 🖸

$$\begin{array}{l} \hbox{ (Intersection of the section of the secti$$

16) Tidal Period Accounting for Non-sinusoidal Character of Prototype Flow by Keulegan

fx
$$T = \frac{P \cdot \pi \cdot C}{Q_{max}}$$

ex 2.030725 Year $= \frac{32m^3 \cdot \pi \cdot 1.01}{50m^3/s}$

17) Tidal Period given Maximum Cross-sectionally Averaged Velocity and Tidal Prism

fx
$$T = \frac{P \cdot \pi}{V_m \cdot A_{avg}}$$

ex 3.064968 Year $= \frac{32m^3 \cdot \pi}{4.1m/s \cdot 8m^2}$

18) Tidal Period given Maximum Instantaneous Ebb Tide Discharge and Tidal Prism

fx
$$T = \frac{P \cdot \pi}{Q_{max}}$$
 Open Calculator C

ex
$$2.010619$$
Year $= \frac{32 \text{m}^3 \cdot \pi}{50 \text{m}^3/\text{s}}$

19) Tidal Period when Tidal Prism Accounting for Non-sinusoidal Prototype Flow by Keulegan

fx
$$T = \frac{P \cdot \pi \cdot C}{V_m \cdot A_{avg}}$$

ex 3.095618 Year $= \frac{32m^3 \cdot \pi \cdot 1.01}{4.1m/s \cdot 8m^2}$

20) Tidal Prism Filling Bay Accounting for Non-sinusoidal Prototype Flow

$$\mathbf{fx} \mathbf{P} = \frac{\mathbf{T} \cdot \mathbf{Q}_{\max}}{\pi \cdot \mathbf{C}}$$
Open Calculator **C**

$$\mathbf{x} 31.51583 \mathrm{m}^{3} = \frac{2 \mathrm{Year} \cdot 50 \mathrm{m}^{3} / \mathrm{s}}{\pi \cdot 1.01}$$

21) Tidal Prism filling Bay given Maximum Ebb Tide Discharge 🕑

22) Tidal Prism for Non-sinusoidal character of Prototype Flow by Keulegan

23) Tidal Prism given Average Area over Channel Length 🕑

Open Calculator 🛃

ex
$$20.88113$$
m³ = $\frac{2$ Year $\cdot 4.1$ m/s $\cdot 8$ m²}{\pi}

 $\mathrm{P} = rac{\mathrm{T} \cdot \mathrm{V_m} \cdot \mathrm{A_{avg}}}{\pi}$

Variables Used

- **A**avg Average Area over the Channel Length (Square Meter)
- C Keulegan Constant for Non-sinusoidal Character
- D Depth of Water at Current Meter Location (Meter)
- **P** Tidal Prism Filling Bay (Cubic Meter)
- Q_{max} Maximum Instantaneous Ebb Tide Discharge (Cubic Meter per Second)
- **r_H** Hydraulic Radius (Meter)
- **T** Tidal Duration (Year)
- **T**_r Residence Time (Year)
- **V** Average Volume of Bay over Tidal Cycle (*Cubic Meter per Hour*)
- Vavg Max Velocity averaged Over Inlet Cross Section (Meter per Second)
- V_m Maximum Cross Sectional Average Velocity (Meter per Second)
- Vmeas Point Measurement of Maximum Velocity (Meter per Second)
- E Fraction of New Water entering the Bay

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Year (Year) Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³) Volume Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Hour (m³/hr), Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion

Check other formula lists

 Structures Formulas Density Currents in Harbors Formulas Density Currents in Rivers Formulas Dredging Equipment Formulas 	Estimating Marine and Coastal Winds Formulas Hydrodynamic Analysis and Design Conditions Formulas Hydrodynamics of Tidal Inlets-2 Formulas Meteorology and Wave Climate Formulas
---	---

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/19/2024 | 6:20:29 AM UTC

Please leave your feedback here...

