
calculatoratoz.com

unitsconverters.com

Hydrodynamics of Tidal Inlets2 Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Hydrodynamics of Tidal Inlets-2 Formulas

Hydrodynamics of Tidal Inlets-2 2

Hydrodynamic and Sediment Interaction at Tidal Inlets

Tidal Dispersion and Mixing

1) Average Volume of Bay over Tidal Cycle given Residence Time $\boxed{\Omega}$
$f \mathrm{x} V=\frac{\mathrm{T}_{\mathrm{r}} \cdot \varepsilon \cdot \mathrm{P}}{\mathrm{T}}$
Open Calculator
ex $179.2 \mathrm{~m}^{3} / \mathrm{hr}=\frac{16 \text { Year } \cdot 0.7 \cdot 32 \mathrm{~m}^{3}}{2 \text { Year }}$
2) Fraction of New Water Entering Bay from Sea each Tidal Cycle given Residence Time
$\mathrm{fx} \varepsilon=\frac{\mathrm{V} \cdot \mathrm{T}}{\mathrm{P} \cdot \mathrm{T}_{\mathrm{r}}}$
ex $0.703125=\frac{180 \mathrm{~m}^{3} / \mathrm{hr} \cdot 2 \text { Year }}{32 \mathrm{~m}^{3} \cdot 16 \text { Year }}$
3) Residence Time
$f \mathrm{fx} \mathrm{T}_{\mathrm{r}}=\mathrm{T} \cdot\left(\frac{\mathrm{V}}{\varepsilon \cdot \mathrm{P}}\right)$
ex 16.07143 Year $=2$ Year $\cdot\left(\frac{180 \mathrm{~m}^{3} / \mathrm{hr}}{0.7 \cdot 32 \mathrm{~m}^{3}}\right)$
4) Tidal Period given Residence Time 〔
$f \times \mathrm{T}=\frac{\mathrm{T}_{\mathrm{r}} \cdot \varepsilon \cdot \mathrm{P}}{\mathrm{V}}$
ex 1.991111 Year $=\frac{16 \text { Year } \cdot 0.7 \cdot 32 \mathrm{~m}^{3}}{180 \mathrm{~m}^{3} / \mathrm{hr}}$
5) Tidal Prism given Residence Time
$f \times P=\frac{T \cdot V}{T_{r} \cdot \varepsilon}$
Open Calculator
ex $32.14286 \mathrm{~m}^{3}=\frac{2 \text { Year } \cdot 180 \mathrm{~m}^{3} / \mathrm{hr}}{16 \text { Year } \cdot 0.7}$

Tidal Prism

6) Average Area over Channel Length given Tidal Prism
$f \mathbf{x} \mathrm{~A}_{\mathrm{avg}}=\frac{\mathrm{P} \cdot \pi}{\mathrm{T} \cdot \mathrm{V}_{\mathrm{m}}}$
ex $12.25987 \mathrm{~m}^{2}=\frac{32 \mathrm{~m}^{3} \cdot \pi}{2 \text { Year } \cdot 4.1 \mathrm{~m} / \mathrm{s}}$
7) Average Area over Channel Length given Tidal Prism of Non-Sinusoidal Prototype Flow \circlearrowleft

$$
f x \mathrm{~A}_{\mathrm{avg}}=\frac{\mathrm{P} \cdot \pi \cdot \mathrm{C}}{\mathrm{~T} \cdot \mathrm{~V}_{\mathrm{m}}}
$$

ex $12.38247 \mathrm{~m}^{2}=\frac{32 \mathrm{~m}^{3} \cdot \pi \cdot 1.01}{2 \text { Year } \cdot 4.1 \mathrm{~m} / \mathrm{s}}$
8) Depth of Water at Current Meter Location
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{D}}=\frac{\mathrm{r}_{\mathrm{H}}}{\left(\frac{\mathrm{V}_{\mathrm{avg}}}{\mathrm{V}_{\text {meas }}}\right)^{\frac{3}{2}}}$

$$
\mathbf{e x} 8.101062 \mathrm{~m}=\frac{0.33 \mathrm{~m}}{\left(\frac{3 \mathrm{~m} / \mathrm{s}}{25.34 \mathrm{~m} / \mathrm{s}}\right)^{\frac{3}{2}}}
$$

9) Hydraulic Radius of Entire Cross-Section
$f x r_{H}=D \cdot\left(\frac{V_{\text {avg }}}{V_{\text {meas }}}\right)^{\frac{3}{2}}$
Open Calculator
ex $0.329957 \mathrm{~m}=8.1 \mathrm{~m} \cdot\left(\frac{3 \mathrm{~m} / \mathrm{s}}{25.34 \mathrm{~m} / \mathrm{s}}\right)^{\frac{3}{2}}$
10) Maximum Cross-Sectionally Averaged Velocity during Tidal Cycle given Tidal Prism ©
$f_{x} V_{m}=\frac{P \cdot \pi}{T \cdot A_{a v g}}$
Open Calculator
ex $6.283185 \mathrm{~m} / \mathrm{s}=\frac{32 \mathrm{~m}^{3} \cdot \pi}{2 \text { Year } \cdot 8 \mathrm{~m}^{2}}$
11) Maximum Cross-Sectionally Averaged Velocity given Tidal Prism of Non-sinusoidal Prototype Flow
$f \mathrm{x} \mathrm{V}_{\mathrm{m}}=\frac{\mathrm{P} \cdot \pi \cdot \mathrm{C}}{\mathrm{T} \cdot \mathrm{A}_{\mathrm{avg}}}$
ex $6.346017 \mathrm{~m} / \mathrm{s}=\frac{32 \mathrm{~m}^{3} \cdot \pi \cdot 1.01}{2 \text { Year } \cdot 8 \mathrm{~m}^{2}}$
12) Maximum Ebb Tide Discharge Accounting for Non-Sinusoidal Character of Prototype Flow by Keulegan

$\mathrm{fx} \mathrm{Q}_{\max }=\frac{\mathrm{P} \cdot \pi \cdot \mathrm{C}}{\mathrm{T}}$
ex $50.76814 \mathrm{~m}^{3} / \mathrm{s}=\frac{32 \mathrm{~m}^{3} \cdot \pi \cdot 1.01}{2 \text { Year }}$
13) Maximum Instantaneous Ebb Tide Discharge given Tidal Prism

$$
f \mathrm{x} \mathrm{Q}_{\max }=\mathrm{P} \cdot \frac{\pi}{\mathrm{~T}}
$$

ex $50.26548 \mathrm{~m}^{3} / \mathrm{s}=32 \mathrm{~m}^{3} \cdot \frac{\pi}{2 \mathrm{Year}}$
14) Maximum Velocity Averaged over Entire Cross-Section
$f_{\mathrm{x}} \mathrm{V}_{\mathrm{avg}}=\mathrm{V}_{\mathrm{meas}} \cdot\left(\frac{\mathrm{r}_{\mathrm{H}}}{\mathrm{D}}\right)^{\frac{2}{3}}$
ex $3.000262 \mathrm{~m} / \mathrm{s}=25.34 \mathrm{~m} / \mathrm{s} \cdot\left(\frac{0.33 \mathrm{~m}}{8.1 \mathrm{~m}}\right)^{\frac{2}{3}}$
15) Point Measurement of Maximum Velocity
$\mathrm{fx} \mathrm{V}_{\text {meas }}=\frac{\mathrm{V}_{\mathrm{avg}}}{\left(\frac{\mathrm{r}_{\mathrm{H}}}{\mathrm{D}}\right)^{\frac{2}{3}}}$
Open Calculator
ex $25.33778 \mathrm{~m} / \mathrm{s}=\frac{3 \mathrm{~m} / \mathrm{s}}{\left(\frac{0.33 \mathrm{~m}}{8.1 \mathrm{~m}}\right)^{\frac{2}{3}}}$
16) Tidal Period Accounting for Non-sinusoidal Character of Prototype

Flow by Keulegan
$f \mathrm{fx} \mathrm{T}=\frac{\mathrm{P} \cdot \pi \cdot \mathrm{C}}{\mathrm{Q}_{\max }}$
Open Calculator
ex 2.030725 Year $=\frac{32 \mathrm{~m}^{3} \cdot \pi \cdot 1.01}{50 \mathrm{~m}^{3} / \mathrm{s}}$
17) Tidal Period given Maximum Cross-sectionally Averaged Velocity and Tidal Prism
$f_{\mathrm{x}} \mathrm{T}=\frac{\mathrm{P} \cdot \pi}{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{A}_{\mathrm{avg}}}$
ex 3.064968 Year $=\frac{32 \mathrm{~m}^{3} \cdot \pi}{4.1 \mathrm{~m} / \mathrm{s} \cdot 8 \mathrm{~m}^{2}}$
18) Tidal Period given Maximum Instantaneous Ebb Tide Discharge and Tidal Prism

$$
\text { ex 2.010619Year }=\frac{32 \mathrm{~m}^{3} \cdot \pi}{50 \mathrm{~m}^{3} / \mathrm{s}}
$$

19) Tidal Period when Tidal Prism Accounting for Non-sinusoidal Prototype Flow by Keulegan
$f \mathrm{x} \mathrm{T}=\frac{\mathrm{P} \cdot \pi \cdot \mathrm{C}}{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{A}_{\mathrm{avg}}}$
Open Calculator
ex 3.095618 Year $=\frac{32 \mathrm{~m}^{3} \cdot \pi \cdot 1.01}{4.1 \mathrm{~m} / \mathrm{s} \cdot 8 \mathrm{~m}^{2}}$
20) Tidal Prism Filling Bay Accounting for Non-sinusoidal Prototype Flow by Keulegan
$f \mathrm{x} P=\frac{\mathrm{T} \cdot \mathrm{Q}_{\max }}{\pi \cdot \mathrm{C}}$
Open Calculator
ex $31.51583 \mathrm{~m}^{3}=\frac{2 \text { Year } \cdot 50 \mathrm{~m}^{3} / \mathrm{s}}{\pi \cdot 1.01}$
21) Tidal Prism filling Bay given Maximum Ebb Tide Discharge
$f \mathrm{fx}=\mathrm{T} \cdot \underline{\mathrm{Q}_{\mathrm{max}}}$
π
ex $31.83099 \mathrm{~m}^{3}=2$ Year $\cdot \frac{50 \mathrm{~m}^{3} / \mathrm{s}}{\pi}$

22) Tidal Prism for Non-sinusoidal character of Prototype Flow by Keulegan

$f x P=T \cdot \frac{Q_{\max }}{\pi \cdot C}$
ex $31.51583 \mathrm{~m}^{3}=2$ Year $\cdot \frac{50 \mathrm{~m}^{3} / \mathrm{s}}{\pi \cdot 1.01}$

Open Calculator
23) Tidal Prism given Average Area over Channel Length

ex $20.88113 \mathrm{~m}^{3}=\frac{2 \text { Year } \cdot 4.1 \mathrm{~m} / \mathrm{s} \cdot 8 \mathrm{~m}^{2}}{\pi}$

Variables Used

- $\mathbf{A}_{\text {avg }}$ Average Area over the Channel Length (Square Meter)
- C Keulegan Constant for Non-sinusoidal Character
- D Depth of Water at Current Meter Location (Meter)
- P Tidal Prism Filling Bay (Cubic Meter)
- $\mathbf{Q}_{\max }$ Maximum Instantaneous Ebb Tide Discharge (Cubic Meter per Second)
- $\mathbf{r}_{\mathbf{H}}$ Hydraulic Radius (Meter)
- T Tidal Duration (Year)
- $\mathbf{T}_{\mathbf{r}}$ Residence Time (Year)
- V Average Volume of Bay over Tidal Cycle (Cubic Meter per Hour)
- Vavg Max Velocity averaged Over Inlet Cross Section (Meter per Second)
- $\mathbf{V}_{\mathbf{m}}$ Maximum Cross Sectional Average Velocity (Meter per Second)
- $\mathbf{V}_{\text {meas }}$ Point Measurement of Maximum Velocity (Meter per Second)
- ε Fraction of New Water entering the Bay

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Year (Year)

Time Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Hour ($\mathrm{m}^{3} / \mathrm{hr}$), Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Calculation of Forces on Ocean Structures Formulas
- Density Currents in Harbors Formulas C
- Density Currents in Rivers Formulas ${ }^{2}$
- Dredging Equipment Formulas
- Estimating Marine and Coastal Winds Formulas
- Hydrodynamic Analysis and Design Conditions Formulas $\sqrt{ }$
- Hydrodynamics of Tidal Inllets-2 Formulas ${ }^{5}$
Meteorology and Wave Climate Formulas $\mathbb{}$

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

