

Uniform Flow in Channels Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 32 Uniform Flow in Channels Formulas

Uniform Flow in Channels

Average Velocity in Uniform Flow in Channels 🗗

1) Average Velocity in Channel 💪

 $\left| \mathbf{V}_{\mathrm{avg}} = \sqrt{8 \cdot [\mathrm{g}] \cdot \mathrm{R}_{\mathrm{H}} \cdot rac{\mathrm{S}}{\mathrm{f}}}
ight|$

Open Calculator 🚰

ex $0.316891 ext{m/s} = \sqrt{8 \cdot [ext{g}] \cdot 1.6 ext{m} \cdot rac{0.0004}{0.5}}$

2) Boundary Shear Stress

fx $\zeta_0 = \gamma_{
m l} \cdot {
m R}_{
m H} \cdot {
m S}$

Open Calculator 🗗

 $\text{ex} \ 6.2784 \text{Pa} = 9.81 \text{kN/m}^3 \cdot 1.6 \text{m} \cdot 0.0004$

3) Friction Factor given Average Velocity in Channel

 \mathbf{f} $\mathbf{f} = \left(8 \cdot [g] \cdot R_H \cdot rac{S}{V_{\mathsf{avg}}^2}
ight)$

Open Calculator

 $oxed{ex} 0.490332 = \left(8 \cdot [\mathrm{g}] \cdot 1.6 \mathrm{m} \cdot rac{0.0004}{\left(0.32 \mathrm{m/s}
ight)^2}
ight)^2$

4) Hydraulic Radius given Average Velocity in Channel

Open Calculator

$$\mathbf{f}$$
 $R_{\mathrm{H}} = \left(rac{V_{\mathrm{avg}}}{\sqrt{8\cdot[\mathrm{g}]\cdotrac{\mathrm{S}}{\mathrm{f}}}}
ight)^{2}$

ex
$$1.631546 \mathrm{m} = \left(\frac{0.32 \mathrm{m/s}}{\sqrt{8 \cdot [\mathrm{g}] \cdot \frac{0.0004}{0.5}}} \right)^2$$

5) Hydraulic Radius given Boundary Shear Stress 🗗

Open Calculator

$$ext{ex} egin{aligned} 1.605505 ext{m} &= rac{6.3 ext{Pa}}{9.81 ext{kN/m}^3 \cdot 0.0004} \end{aligned}$$

ex
$$0.000408 = \left(rac{0.32 ext{m/s}}{\sqrt{8 \cdot ext{[g]} \cdot rac{1.6 ext{m}}{0.5}}}
ight)^2$$

7) Slope of Channel Bottom given Boundary Shear Stress 🚰

Open Calculator

 $\boxed{\textbf{ex}} \ 0.000401 = \frac{6.3 Pa}{9.81 kN/m^3 \cdot 1.6 m}$

8) Specific Weight of Liquid given Boundary Shear Stress

Open Calculator

= $9.84375 \mathrm{kN/m^3} = rac{6.3 \mathrm{Pa}}{1.6 \mathrm{m} \cdot 0.0004}$

9) Strickler Formula for Average Height of Roughness Protrusions 🖒

Open Calculator 🗗

 $= 2.256096 \mathrm{mm} = (21 \cdot 0.012)^6$

Chezy Constant in Uniform Flow 🗗

10) Average Velocity in Channel given Chezy Constant

Open Calculator

ex $1.011929 \mathrm{m/s} = 40 \cdot \sqrt{1.6 \mathrm{m} \cdot 0.0004}$

11) Chezy Constant given Average Velocity in Channel

 $ext{C} = rac{ ext{V}_{ ext{avg}}}{\sqrt{ ext{R}_{ ext{H}} \cdot ext{S}}}$

Open Calculator

ex $12.64911 = \frac{0.32 \mathrm{m/s}}{\sqrt{1.6 \mathrm{m} \cdot 0.0004}}$

12) Chezy Constant through Ganguillet-Kutter Formula

 $ext{C} = rac{23 + \left(rac{0.00155}{ ext{S}}
ight) + \left(rac{1}{ ext{n}}
ight)}{1 + \left(23 + \left(rac{0.00155}{ ext{S}}
ight)
ight) \cdot \left(rac{ ext{n}}{\sqrt{ ext{D}_{ ext{Hydraulic}}}}
ight)}$

Open Calculator

13) Chezy Constant using Basin Formula 🗗

fx $m C = rac{157.6}{1.81 + \left(rac{K}{\sqrt{
m D_{Hydraulic}}}
ight)}$

Open Calculator 🗗

ex $84.38028 = \frac{157.6}{1.81 + \left(\frac{0.10}{\sqrt{3} ext{m}}\right)}$

14) Chezy Constant using Manning's Formula 🛂

 $\mathbf{K} = \left(rac{1}{n}
ight) \cdot \mathrm{D}_{\mathrm{Hydraulic}}^{rac{1}{6}}$

Open Calculator

15) Hydraulic Radius given Average Velocity in Channel with Chezy Constant

fx $m R_{H} = rac{\left(rac{V_{avg}}{C}
ight)^{2}}{S}$

Open Calculator

$$ext{ex} 0.16 ext{m} = rac{\left(rac{0.32 ext{m/s}}{40}
ight)^2}{0.0004}$$

16) Slope of Channel Bed given Average Velocity in Channel with Chezy Constant

$$extbf{fx} S = rac{\left(rac{V_{avg}}{C}
ight)^2}{R_H}$$

$$extstyle{4 ext{E^--5}} = rac{\left(rac{0.32 ext{m/s}}{40}
ight)^2}{1.6 ext{m}}$$

Manning's Formula in Uniform Flow

17) Manning's Coefficient using Strickler Formula

fx
$$n=rac{R_a^{rac{1}{6}}}{21}$$

Open Calculator

$$oxed{ex} 0.004762 = rac{(0.001 \mathrm{mm})^{rac{1}{6}}}{21}$$

18) Manning's Formula for Average Velocity

$$\mathbf{K} egin{equation} \mathbf{V}_{avg(\mathrm{U})} = \left(rac{1}{\mathrm{n}}
ight) \cdot \left(\mathrm{R}_{\mathrm{H}}^{rac{2}{3}}
ight) \cdot \left(\mathrm{S}^{rac{1}{2}}
ight) \end{aligned}$$

Open Calculator 🗗

19) Manning's Formula for Coefficient of Roughness given Average Velocity

$$\mathbf{f}\mathbf{z} = \left(rac{1}{\mathrm{V}_{avg(\mathrm{U})}}
ight) \cdot \left(\mathrm{S}^{rac{1}{2}}
ight) \cdot \left(\mathrm{R}_{\mathrm{H}}^{rac{2}{3}}
ight)$$

$$\boxed{ 0.034371 = \left(\frac{1}{0.796 \mathrm{m/s}} \right) \cdot \left(\left(0.0004 \right)^{\frac{1}{2}} \right) \cdot \left(\left(1.6 \mathrm{m} \right)^{\frac{2}{3}} \right) }$$

20) Manning's Formula for Hydraulic Radius given Average Velocity 🖒

 $\left| \mathbf{R}_{\mathrm{H}} = \left(V_{avg(\mathrm{U})} \cdot rac{\mathrm{n}}{\sqrt{\mathrm{S}}}
ight)^{rac{3}{2}}
ight|$

Open Calculator 🗗

 $= \left(0.796 \text{m/s} \cdot \frac{0.012}{\sqrt{0.0004}}\right)^{\frac{3}{2}}$

21) Manning's Formula for Hydraulic Radius given Chezy's Constant

Open Calculator

 $oxed{ex} 0.16 \mathrm{m} = \left(rac{1}{0.0004}
ight) \cdot \left(rac{0.32 \mathrm{m/s}}{40}
ight)^2$

22) Manning's Formula for Roughness Coefficient given Chezy's Constant

$$\mathbf{n} = \left(rac{1}{C}
ight) \cdot \mathrm{D}_{\mathrm{Hydraulic}}^{rac{1}{6}}$$

23) Manning's Formula for Slope of Channel Bed given Average Velocity

$$\left| \mathbf{K}
ight| \mathbf{S} = \left(\mathbf{V}_{avg(\mathrm{U})} \cdot rac{\mathbf{n}}{\mathrm{R}_{\mathrm{H}}^{rac{2}{3}}}
ight)^2$$

Open Calculator

ex
$$4.9 ext{E^--5} = \left(0.796 ext{m/s} \cdot \frac{0.012}{(1.6 ext{m})^{rac{2}{3}}}\right)^2$$

Uniform Turbulent Flow

24) Average Height of Roughness Protrusions given Chezy Constant for Rough Channels

ex
$$0.117019 \mathrm{m} = 12.2 \cdot \frac{1.6 \mathrm{m}}{10^{\frac{40}{18}}}$$

25) Average Height of Roughness Protrusions given Mean Velocity of flow in Rough Channels

 $m R_a = rac{R_H}{10^{rac{\left(rac{V_{avg(Tur)}}{V_{
m shear}}
ight)-6.25}}{5.75}}$

Open Calculator 🗗

 $egin{aligned} extbf{ex} 0.000887 ext{mm} &= rac{1.6 ext{m}}{10^{rac{\left(rac{380 ext{m/s}}{9 ext{m/s}}
ight) - 6.25}{5.75}} \end{aligned}$

26) Chezy Constant for Rough Channels

Open Calculator 🗗

ex $131.2286 = 18 \cdot \log 10 \left(12.2 \cdot \frac{1.6 \text{m}}{0.001 \text{mm}} \right)$

27) Hydraulic Radius given Chezy Constant for Rough Channels 🚰

ex
$$1.4 ext{E^--5m} = rac{\left(10^{rac{40}{18}}
ight) \cdot 0.001 ext{mm}}{12.2}$$

28) Hydraulic Radius given Mean Velocity of flow in Rough Channels 🗗

$$m R_H = \left(10^{rac{\left(rac{V_{avg(Tur)}}{V_{shear}}
ight)-6.25}{5.75}}
ight) \cdot R_a$$

$$ext{ex} 1.803178 ext{m} = \left(10^{rac{\left(rac{380 ext{m/s}}{9 ext{m/s}}
ight) - 6.25}{5.75}}
ight) \cdot 0.001 ext{mm}$$

29) Hydraulic Radius given Mean Velocity of flow in Smooth Channels

ex
$$1.931671 \mathrm{m} = \left(10 rac{\left(rac{380 \mathrm{m/s}}{9 \mathrm{m/s}}
ight) - 3.25}{5.75}}{
ight) \cdot \left(rac{0.029 \mathrm{St}}{9 \mathrm{m/s}}
ight)$$

30) Kinematic Viscosity given Mean Velocity of flow in Smooth Channels

$$u_{\mathrm{Tur}} = rac{\mathrm{R_H \cdot V_{\mathrm{shear}}}}{10^{rac{\left(rac{\mathrm{V}_{avg(\mathrm{Tur})}}{\mathrm{V_{\mathrm{shear}}}}
ight) - 3.25}}{5.75}}$$

$$0.024021 \mathrm{St} = rac{1.6 \mathrm{m} \cdot 9 \mathrm{m/s}}{10^{rac{\left(rac{380 \mathrm{m/s}}{9 \mathrm{m/s}}
ight) - 3.25}{5.75}}}$$

fx

fx

31) Mean Velocity of flow in Rough Channels

Open Calculator

Open Calculator

$$oxed{ V_{avg(Tur)} = V_{shear} \cdot \left(6.25 + 5.75 \cdot \log 10 igg(rac{R_{H}}{R_{a}}
ight)
ight) }$$

$$= 377.3132 \text{m/s} = 9 \text{m/s} \cdot \left(6.25 + 5.75 \cdot \log 10 \left(\frac{1.6 \text{m}}{0.001 \text{mm}} \right) \right)$$

32) Mean Velocity of flow in Smooth Channels 🗗

$$ext{V}_{avg(ext{Tur})} = ext{V}_{ ext{shear}} \cdot \left(3.25 + 5.75 \cdot \log 10 igg(ext{R}_{ ext{H}} \cdot rac{ ext{V}_{ ext{shear}}}{ ext{v}_{ ext{Tur}}} igg)
ight)$$

$$\boxed{ 375.7662 \text{m/s} = 9 \text{m/s} \cdot \left(3.25 + 5.75 \cdot \log 10 \left(1.6 \text{m} \cdot \frac{9 \text{m/s}}{0.029 \text{St}} \right) \right) }$$

Variables Used

- C Chezy's Constant
- D_{Hydraulic} Hydraulic Depth (Meter)
- f Darcy Friction Factor
- K Bazin's Constant
- n Manning's Roughness Coefficient
- Ra Roughness Value (Millimeter)
- R_H Hydraulic Radius of Channel (Meter)
- S Bed Slope
- Vava Average Velocity of Flow (Meter per Second)
- Vava(Tur) Average Velocity of Turbulent flow (Meter per Second)
- Vava(U) Average Velocity of Uniform Flow (Meter per Second)
- V_{shear} Shear Velocity (Meter per Second)
- **Z**₀ Roughness Height of Surface (*Meter*)
- YI Liquid Specific Weight (Kilonewton per Cubic Meter)
- ζ₀ Shear Stress of Wall (Pascal)
- V_{Tur} Kinematic Viscosity of Turbulent Flow (Stokes)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second²

 Gravitational acceleration on Farth
- Function: log10, log10(Number)
 Common logarithm function (base 10)
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Meter (m), Millimeter (mm)

 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Kinematic Viscosity in Stokes (St)
 Kinematic Viscosity Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation
 Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas
- Flow of Compressible Fluids Formulas
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its
 Measurement Formulas
- Fundamentals of Fluid Flow Formulas
- Hydroelectric Power Generation
 Formulas
- Hydrostatic Forces on Surfaces
 Formulas

- Impact of Free Jets Formulas
- Impulse Momentum Equation And Its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Economical or Most
 Efficient Section of Channel
 Formulas
- Non-uniform Flow in Channels Formulas
- Properties of Fluid Formulas
- Thermal Expansion of Pipe and Pipe Stresses Formulas
- Uniform Flow in Channels
 Formulas
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/1/2023 | 2:48:59 AM UTC

Please leave your feedback here...

