Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 1/10

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 15 Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas

Metering Flumes and Momentum in Open Channel Flow Specific Force C

Metering Flumes 🕑

1) Coefficient of Discharge through Flume given Discharge Flow through Channel

fx
$$\mathbf{C}_{\mathrm{d}} = \left(rac{\mathrm{Q}}{\mathrm{A}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{f}}} \cdot \left(\sqrt{rac{(\mathrm{A}_{\mathrm{i}}^2) - (\mathrm{A}_{\mathrm{f}}^2)}{2 \cdot [\mathrm{g}] \cdot (\mathrm{h}_{\mathrm{i}} - \mathrm{h}_{\mathrm{o}})}} \right)
ight)$$

Open Calculator

$$\mathbf{x} \left[0.767462 = \left(rac{14 \mathrm{m}^3/\mathrm{s}}{7.1 \mathrm{m}^2 \cdot 1.8 \mathrm{m}^2} \cdot \left(\sqrt{rac{\left(\left(7.1 \mathrm{m}^2
ight)^2
ight) - \left(\left(1.8 \mathrm{m}^2
ight)^2
ight)}{2 \cdot [\mathrm{g}] \cdot \left(20 \mathrm{m} - 15.1 \mathrm{m}
ight)}}
ight)
ight)
ight)$$

2) Coefficient of Discharge through Flume given Discharge Flow through Rectangular Channel

$$\label{eq:Cd} \boxed{\mathbf{C}_{d} = \left(\frac{Q}{A_{i} \cdot A_{f}} \cdot \left(\sqrt{\frac{\left(A_{i}^{2}\right) - \left(A_{f}^{2}\right)}{2 \cdot [g] \cdot \left(h_{i} - h_{o}\right)}} \right) \right)}$$
 Open Calculator (*

ex
$$0.767462 = \left(\frac{14 \text{m}^3/\text{s}}{7.1 \text{m}^2 \cdot 1.8 \text{m}^2} \cdot \left(\sqrt{\frac{\left((7.1 \text{m}^2)^2\right) - \left((1.8 \text{m}^2)^2\right)}{2 \cdot [\text{g}] \cdot (20 \text{m} - 15.1 \text{m})}}\right)\right)$$

e)

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 3/10

3) Depth of Flow given Discharge through Critical Depth Flume

$$f_{\mathbf{X}} d_{f} = \left(\frac{Q}{W_{t} \cdot C_{d}}\right)^{\frac{2}{3}}$$

$$e_{\mathbf{X}} 3.324125m = \left(\frac{14m^{3}/s}{3.5m \cdot 0.66}\right)^{\frac{2}{3}}$$

$$Open Calculator C$$

4) Discharge Coefficient given Discharge through Critical Depth Flume

fx
$$C_{d} = rac{Q}{W_{t} \cdot (d_{f}^{1.5})}$$

ex $0.667251 = rac{14m^{3}/s}{3.5m \cdot ((3.3m)^{1.5})}$

5) Discharge Flow through Channel

fx
$$\mathbf{Q} = (\mathrm{C}_{\mathrm{d}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{f}}) \cdot \left(\sqrt{2 \cdot [\mathrm{g}] \cdot rac{\mathrm{h}_{\mathrm{i}} - \mathrm{h}_{\mathrm{o}}}{\left(\mathrm{A}_{\mathrm{i}}^2\right) - \left(\mathrm{A}_{\mathrm{f}}^2\right)}}
ight)$$

Open Calculator 🕑

Open Calculator

$$\boxed{12.03969 \mathrm{m^3/s} = (0.66 \cdot 7.1 \mathrm{m^2} \cdot 1.8 \mathrm{m^2}) \cdot \left(\sqrt{2 \cdot \mathrm{[g]} \cdot rac{20 \mathrm{m} - 15.1 \mathrm{m}}{\left(\left(7.1 \mathrm{m^2}
ight)^2
ight) - \left(\left(1.8 \mathrm{m^2}
ight)^2
ight)}}
ight)}$$

ex

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 4/10

6) Discharge Flow through Rectangular Channel 🕑

$$\label{eq:Q} \begin{array}{|c|c|c|c|} \hline \textbf{Q} &= (C_d \cdot A_i \cdot A_f) \cdot \left(\sqrt{2 \cdot [g] \cdot \frac{h_i - h_o}{(A_i^2) - (A_f^2)}}\right) \\ \hline \textbf{Q} &= (C_d \cdot A_i \cdot A_f) \cdot \left(\sqrt{2 \cdot [g] \cdot \frac{20m - 15.1m}{\left((7.1m^2)^2\right) - \left((1.8m^2)^2\right)}}\right) \\ \hline \textbf{Q} &= (0.66 \cdot 7.1m^2 \cdot 1.8m^2) \cdot \left(\sqrt{2 \cdot [g] \cdot \frac{20m - 15.1m}{\left((7.1m^2)^2\right) - \left((1.8m^2)^2\right)}}\right) \\ \hline \textbf{T} &= (1.84787m^3/s) = (1.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right)) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = 0.66 \cdot 3.5m \cdot \left((3.3m)^{1.5}\right) \\ \hline \textbf{S} &= (1.84787m^3/s) = (1.84787m^3/s) = (1.84787m^3/s) \\ \hline \textbf{S} &= (1.84787m^3/s) = (1.84787m^3/s) = (1.84787m^3/s) \\ \hline \textbf{S} &= (1.84787m^3/s) = (1.84787m^3/s) = (1.84787m^3/s) \\ \hline \textbf{S} &= (1.84787m^3/s) = (1.84787m^3/s) = (1.84787m^3/s) \\ \hline \textbf{S} &= (1.84787m^3/s) = (1.84787m^$$

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 5/10

9) Head at Entrance of Section given Discharge Flow through Channel 🕑

$$\begin{aligned} & \mathbf{k} \quad \mathbf{h}_{o} = \mathbf{h}_{i} - \left(\frac{Q}{C_{d} \cdot A_{i} \cdot A_{f} \cdot \left(\sqrt{2 \cdot \frac{[g]}{A_{i}^{2} - A_{f}^{2}}}\right)}\right)^{2} \end{aligned} \\ & \mathbf{ex} \quad 13.37445m = 20m - \left(\frac{14m^{3}/s}{0.66 \cdot 7.1m^{2} \cdot 1.8m^{2} \cdot \left(\sqrt{2 \cdot \frac{[g]}{(7.1m^{3})^{2} - (1.8m^{2})^{2}}}\right)}\right)^{2} \end{aligned} \\ & \mathbf{10} \text{ Width of Throat given Discharge through Critical Depth Flume } \\ & \mathbf{k} \quad \mathbf{W}_{t} = \frac{Q}{C_{d} \cdot \left(d_{f}^{1.5}\right)} \end{aligned} \\ & \mathbf{ex} \quad 3.538451m = \frac{14m^{3}/s}{0.66 \cdot \left((3.3m)^{1.5}\right)} \end{aligned}$$

Momentum in Open Channel Flow Specific Force 🕑

11) Specific Force 🗹

fx
$$\mathbf{F} = \left(\mathbf{Q} \cdot \frac{\mathbf{Q}}{\mathbf{A}_{cs} \cdot [g]}\right) + \mathbf{A}_{cs} \cdot \mathbf{Y}_{t}$$

ex $304.3324 \mathrm{m}^{3} = \left(14 \mathrm{m}^{3}/\mathrm{s} \cdot \frac{14 \mathrm{m}^{3}/\mathrm{s}}{15 \mathrm{m}^{2} \cdot [g]}\right) + 15 \mathrm{m}^{2} \cdot 20.2 \mathrm{m}$

Open Calculator 🕑

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 6/10

12) Specific Force given Top Width

$$\mathbf{F} = \left(\frac{A_{cs}^2}{T}\right) + A_{cs} \cdot Y_t$$

$$\mathbf{F} = \left(\frac{(15m^2)^2}{2.1m}\right) + 15m^2 \cdot 20.2m$$

$$\mathbf{F} = \left(\frac{(15m^2)^2}{2.1m}\right) + 15m^2 \cdot 20.2m$$

13) Top Width given Specific Force 🕑

fx
$$T = rac{A_{cs}^2}{F - A_{cs} \cdot Y_t}$$

ex
$$2.102804m = \frac{(15m^2)^2}{410m^3 - 15m^2 \cdot 20.2m}$$

 $\mathrm{F} - \left(\mathrm{Q} \cdot rac{\mathrm{Q}}{\mathrm{A}_{\mathrm{cs}}\cdot[\mathrm{g}]}
ight)$

14) Vertical Depth of Centroid of Area given Specific Force 🕑

Open Calculator

Open Calculator 🕑

$$\mathbf{r}_{t} = \frac{\mathbf{A}_{cs}}{\mathbf{A}_{cs}}$$

$$\mathbf{r}_{t} = \frac{410 \text{m}^{3} - \left(14 \text{m}^{3}/\text{s} \cdot \frac{14 \text{m}^{3}/\text{s}}{15 \text{m}^{2} \cdot [\text{g}]}\right)}{15 \text{m}^{2}}$$

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 7/10

15) Vertical Depth of Centroid of Area given Specific Force with Top Width 🕑

Open Calculator 🕑

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas... 8/10

Variables Used

- Acs Cross-Sectional Area of Channel (Square Meter)
- Af Cross Section Area 2 (Square Meter)
- A_i Cross Section Area 1 (Square Meter)
- Cd Coefficient of Discharge
- **d**_f Depth of Flow (Meter)
- **F** Specific Force in OCF (*Cubic Meter*)
- h_i Loss of Head at Entrance (Meter)
- ho Loss of Head at Exit (Meter)
- Q Discharge of Channel (Cubic Meter per Second)
- **T** Top Width (Meter)
- W_t Width of Throat (Meter)
- Yt Distance from Centroidal (Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: **sqrt**, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³) Volume Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas...

Check other formula lists

- Computation of Uniform Flow Formulas
- Critical Flow and its Computation
 Formulas
- Geometrical Properties of Channel
 Section Formulas
- Metering Flumes and Momentum in Open Channel Flow Specific Force Formulas
- Specific Energy and Critical Depth
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 10:02:28 AM UTC

Please leave your feedback here ...

