

Load Distribution to Bents and Shear Walls Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Load Distribution to Bents and Shear Walls Formulas

Load Distribution to Bents and Shear Walls 🗗

1) Concentrated Load given Deflection at Top

$$ext{P} = rac{\delta \cdot ext{E} \cdot ext{t}}{4 \cdot \left(\left(\left(rac{ ext{H}}{ ext{L}}
ight)^3
ight) + \left(0.75 \cdot \left(rac{ ext{H}}{ ext{L}}
ight)
ight)}$$

Open Calculator

2) Concentrated Load given Deflection at Top Due to Fixed against Rotation

$$extstyle extstyle extstyle P = rac{\delta \cdot extstyle extstyle$$

Open Calculator

3) Deflection at Top due to Concentrated Load

 $\delta = \left(rac{4\cdot P}{E\cdot t}
ight)\cdot \left(\left(rac{H}{L}
ight)^3 + 0.75\cdot \left(rac{H}{L}
ight)
ight)$

Open Calculator

 $\boxed{ 0.171998 m = \left(\frac{4 \cdot 516.51 kN}{20 MPa \cdot 0.4 m} \right) \cdot \left(\left(\frac{15 m}{25 m} \right)^3 + 0.75 \cdot \left(\frac{15 m}{25 m} \right) \right) }$

4) Deflection at Top due to Fixed against Rotation

 $\delta = \left(\frac{P}{E \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 3 \cdot \left(\frac{H}{L}\right)\right)$

5) Deflection at Top due to Uniform Load

 $\delta = \left(\frac{1.5 \cdot w \cdot H}{E \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + \left(\frac{H}{L}\right)\right)$

Open Calculator 🖸

Open Calculator 🖸

6) Modulus of Elasticity given Deflection at Top Due to Concentrated Load

 $\mathbf{E} = \left(rac{4\cdot\mathrm{P}}{\delta\cdot\mathrm{t}}
ight)\cdot\left(\left(rac{\mathrm{H}}{\mathrm{L}}
ight)^3 + 0.75\cdot\left(rac{\mathrm{H}}{\mathrm{L}}
ight)
ight)$

Open Calculator 🗗

 $\boxed{ 19.99975 \text{MPa} = \left(\frac{4 \cdot 516.51 \text{kN}}{0.172 \text{m} \cdot 0.4 \text{m}} \right) \cdot \left(\left(\frac{15 \text{m}}{25 \text{m}} \right)^3 + 0.75 \cdot \left(\frac{15 \text{m}}{25 \text{m}} \right) \right) }$

7) Modulus of Elasticity given Deflection at Top Due to Fixed against Rotation

 $\mathbf{E} = \left(rac{P}{\delta \cdot t}
ight) \cdot \left(\left(rac{H}{L}
ight)^3 + 3 \cdot \left(rac{H}{L}
ight)
ight)$

Open Calculator 🗗

8) Modulus of Elasticity of Wall Material given Deflection

 $\mathbf{E} = \left(rac{1.5 \cdot \mathbf{w} \cdot \mathbf{H}}{\delta \cdot \mathbf{t}} \right) \cdot \left(\left(rac{\mathbf{H}}{\mathbf{L}}
ight)^3 + \left(rac{\mathbf{H}}{\mathbf{L}}
ight)
ight)$

Open Calculator 🗗

$$20.01453 \mathrm{MPa} = \left(\frac{1.5 \cdot 75 \mathrm{kN} \cdot 15 \mathrm{m}}{0.172 \mathrm{m} \cdot 0.4 \mathrm{m}}\right) \cdot \left(\left(\frac{15 \mathrm{m}}{25 \mathrm{m}}\right)^3 + \left(\frac{15 \mathrm{m}}{25 \mathrm{m}}\right)\right)$$

9) Wall Thickness given Deflection 🖸

 $\mathbf{f}\mathbf{x}$ $\mathbf{t} = \left(rac{1.5 \cdot \mathbf{w} \cdot \mathbf{H}}{\mathbf{E} \cdot \mathbf{\delta}}
ight) \cdot \left(\left(rac{\mathbf{H}}{\mathbf{L}}
ight)^3 + \left(rac{\mathbf{H}}{\mathbf{L}}
ight)
ight)$

Open Calculator

10) Wall Thickness given Deflection at Top due to Concentrated Load

 $t = \left(rac{4\cdot P}{E\cdot \delta}
ight)\cdot \left(\left(rac{H}{L}
ight)^3 + 0.75\cdot \left(rac{H}{L}
ight)
ight)$

11) Wall Thickness given Deflection at Top due to Fixed against Rotation

 $t = \left(\frac{P}{E \cdot \delta}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 3 \cdot \left(\frac{H}{L}\right)\right)$

 $\boxed{\textbf{ex}} 0.302699 \text{m} = \left(\frac{516.51 \text{kN}}{20 \text{MPa} \cdot 0.172 \text{m}}\right) \cdot \left(\left(\frac{15 \text{m}}{25 \text{m}}\right)^3 + 3 \cdot \left(\frac{15 \text{m}}{25 \text{m}}\right)\right)$

Variables Used

- E Modulus of Elasticity of Wall Material (Megapascal)
- **H** Height of the Wall (Meter)
- L Length of Wall (Meter)
- P Concentrated Load on Wall (Kilonewton)
- **t** Wall Thickness (Meter)
- w Uniform Lateral Load (Kilonewton)
- δ Deflection of Wall (Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion

Check other formula lists

 Load Distribution to Bents and Shear Walls Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/6/2024 | 6:00:46 AM UTC

Please leave your feedback here...

