\square 进

unitsconverters.com

Design of Cotter Joint Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 Design of Cotter Joint Formulas

Design of Cotter Joint ©

Forces and Loads on Joint

1) Force on Cotter given Shear Stress in Cotter
$\mathrm{fx} L=2 \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{b} \cdot \tau_{\mathrm{co}}$
Open Calculator
ex $32592 \mathrm{~N}=2 \cdot 14 \mathrm{~mm} \cdot 48.5 \mathrm{~mm} \cdot 24 \mathrm{~N} / \mathrm{mm}^{2}$
2) Load Taken by Cotter Joint Rod given Tensile Stress in Rod
$\mathrm{fx} \mathrm{L}=\frac{\pi \cdot \mathrm{d}^{2} \cdot \sigma \mathrm{t}_{\mathrm{rod}}}{4}$
Open Calculator
ex $37738.38 \mathrm{~N}=\frac{\pi \cdot(31 \mathrm{~mm})^{2} \cdot 50 \mathrm{~N} / \mathrm{mm}^{2}}{4}$
3) Load Taken by Socket of Cotter Joint given Compressive Stress
$f \mathrm{x} L=\sigma_{\text {cso }} \cdot\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{t}_{\mathrm{c}}$
ex $70000 \mathrm{~N}=125 \mathrm{~N} / \mathrm{mm}^{2} \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 14 \mathrm{~mm}$
4) Load Taken by Socket of Cotter Joint given Shear Stress in Socket
$f \mathrm{f} L=2 \cdot\left(\mathrm{~d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}$
Open Calculator
ex $44000 \mathrm{~N}=2 \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 22 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}$
5) Load Taken by Socket of Cotter Joint given Tensile Stress in Socket
$\mathrm{fx} \mathrm{L}=\left(\sigma_{\mathrm{t}} \mathrm{so}\right) \cdot\left(\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)\right)$
Open Calculator ©
ex
$35848.59 \mathrm{~N}=42.8 \mathrm{~N} / \mathrm{mm}^{2} \cdot\left(\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-14 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})\right)$
6) Load Taken by Spigot of Cotter Joint given Compressive Stress in Spigot Considering Crushing Failure
$\mathrm{fx} L=\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}_{2} \cdot \sigma_{\mathrm{c} 1}$
Open Calculator
ex $69440 \mathrm{~N}=14 \mathrm{~mm} \cdot 40 \mathrm{~mm} \cdot 124 \mathrm{~N} / \mathrm{mm}^{2}$
7) Load Taken by Spigot of Cotter Joint given Shear Stress in Spigot
$\mathrm{fx} L=2 \cdot \mathrm{a} \cdot \mathrm{d}_{2} \cdot \tau_{\mathrm{sp}}$
Open Calculator
ex $48880 \mathrm{~N}=2 \cdot 23.5 \mathrm{~mm} \cdot 40 \mathrm{~mm} \cdot 26 \mathrm{~N} / \mathrm{mm}^{2}$
8) Maximum Load taken by Cotter Joint given Spigot Diameter, Thickness and Stress
$f \mathrm{f} L=\left(\frac{\pi}{4} \cdot \mathrm{~d}_{2}^{2}-\mathrm{d}_{2} \cdot \mathrm{t}_{\mathrm{c}}\right) \cdot\left(\sigma_{\mathrm{t}} \mathrm{sp}\right)$
ex $31696.99 \mathrm{~N}=\left(\frac{\pi}{4} \cdot(40 \mathrm{~mm})^{2}-40 \mathrm{~mm} \cdot 14 \mathrm{~mm}\right) \cdot 45.5 \mathrm{~N} / \mathrm{mm}^{2}$

Joint Geometry and Dimensions

9) Cross Section Area of Socket End Resisting Shear Failure
$\mathrm{fx} \mathrm{A}=\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c}$
ex $880 \mathrm{~mm}^{2}=(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 22 \mathrm{~mm}$
10) Cross Section Area of Socket of Cotter Joint Prone to Failure
$f \mathrm{f} A=\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)$
ex $837.584 \mathrm{~mm}^{2}=\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-14 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})$
11) Cross Section Area of Spigot of Cotter Joint Prone to Failure
$\mathrm{fx} \mathrm{A}_{\mathrm{s}}=\frac{\pi \cdot \mathrm{d}_{2}^{2}}{4}-\mathrm{d}_{2} \cdot \mathrm{t}_{\mathrm{c}}$
ex $696.6371 \mathrm{~mm}^{2}=\frac{\pi \cdot(40 \mathrm{~mm})^{2}}{4}-40 \mathrm{~mm} \cdot 14 \mathrm{~mm}$
12) Diameter of Rod of Cotter Joint given Socket Collar Diameter
$f \mathrm{x} d=\frac{\mathrm{d}_{4}}{2.4}$
ex $33.33333 \mathrm{~mm}=\frac{80 \mathrm{~mm}}{2.4}$
13) Diameter of Rod of Cotter Joint given Spigot Collar Diameter \longleftarrow
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{d}_{3}}{1.5}$
ex $32 \mathrm{~mm}=\frac{48 \mathrm{~mm}}{1.5}$
14) Diameter of Rod of Cotter Joint given Thickness of Cotter
$f \mathrm{f} \mathrm{d}=\frac{\mathrm{t}_{\mathrm{c}}}{0.31}$
ex $45.16129 \mathrm{~mm}=\frac{14 \mathrm{~mm}}{0.31}$
15) Diameter of Rod of Cotter Joint given Thickness of Spigot Collar
$f \mathrm{x} d=\frac{\mathrm{t}_{1}}{0.45}$
ex $28.88889 \mathrm{~mm}=\frac{13 \mathrm{~mm}}{0.45}$
16) Diameter of Socket Collar given Rod Diameter
$f \mathrm{f} \mathrm{d}_{4}=2.4 \cdot \mathrm{~d}$
Open Calculator
ex $74.4 \mathrm{~mm}=2.4 \cdot 31 \mathrm{~mm}$
17) Diameter of Socket Collar of Cotter Joint given Bending Stress in Cotter
$\mathrm{fx} \mathrm{d}_{4}=\frac{4 \cdot \mathrm{~b}^{2} \cdot \sigma_{\mathrm{b}} \cdot \frac{\mathrm{t}_{\mathrm{c}}}{\mathrm{L}}-\mathrm{d}_{2}}{2}$
Open Calculator
ex $109.0915 \mathrm{~mm}=\frac{4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{14 \mathrm{~mm}}{50000 \mathrm{~N}}-40 \mathrm{~mm}}{2}$
18) Diameter of Socket Collar of Cotter Joint given Compressive Stress
$\mathrm{fx} \mathrm{d}_{4}=\mathrm{d}_{2}+\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \sigma_{\mathrm{c} 1}}$
Open Calculator 〔
ex $68.80184 \mathrm{~mm}=40 \mathrm{~mm}+\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 124 \mathrm{~N} / \mathrm{mm}^{2}}$
19) Diameter of socket collar of cotter joint given shear stress in socket
$\mathrm{fx} \mathrm{d}_{4}=\frac{\mathrm{L}}{2 \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}}+\mathrm{d}_{2}$
ex $85.45455 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 22 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}}+40 \mathrm{~mm}$
20) Diameter of Spigot Collar given Rod Diameter
$f \mathrm{f} \mathrm{d}_{3}=1.5 \cdot \mathrm{~d}$
ex $46.5 \mathrm{~mm}=1.5 \cdot 31 \mathrm{~mm}$
21) Diameter of Spigot of Cotter Joint given Bending Stress in Cotter
$f \mathrm{x} \mathrm{d}_{2}=4 \cdot \mathrm{~b}^{2} \cdot \sigma_{\mathrm{b}} \cdot \frac{\mathrm{t}_{\mathrm{c}}}{\mathrm{L}}-2 \cdot \mathrm{~d}_{4}$
ex $98.18296 \mathrm{~mm}=4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{14 \mathrm{~mm}}{50000 \mathrm{~N}}-2 \cdot 80 \mathrm{~mm}$
22) Diameter of Spigot of Cotter Joint given Compressive Stress
$\mathrm{fx} \mathrm{d}_{2}=\mathrm{d}_{4}-\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \sigma_{\mathrm{c} 1}}$
Open Calculator
ex $51.19816 \mathrm{~mm}=80 \mathrm{~mm}-\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 124 \mathrm{~N} / \mathrm{mm}^{2}}$
23) Diameter of Spigot of Cotter Joint given Shear Stress in Spigot
$\mathrm{fx} \mathrm{d}_{2}=\frac{\mathrm{L}}{2 \cdot \mathrm{a} \cdot \tau_{\mathrm{sp}}}$
Open Calculator
ex $40.91653 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 23.5 \mathrm{~mm} \cdot 26 \mathrm{~N} / \mathrm{mm}^{2}}$
24) Inside Diameter of Socket of Cotter Joint given Shear Stress in Socket
$\mathrm{fx} \mathrm{d}_{2}=\mathrm{d}_{4}-\frac{\mathrm{L}}{2 \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}}$
ex $34.54545 \mathrm{~mm}=80 \mathrm{~mm}-\frac{50000 \mathrm{~N}}{2 \cdot 22 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}}$
25) Minimum Diameter of Spigot in Cotter Joint Subjected to Crushing Stress
$f \mathrm{x} \mathrm{d}_{2}=\frac{\mathrm{L}}{\sigma_{\mathrm{c}} \cdot \mathrm{t}_{\mathrm{c}}}$
ex $28.34467 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{126 \mathrm{~N} / \mathrm{mm}^{2} \cdot 14 \mathrm{~mm}}$
26) Minimum Rod Diameter in Cotter Joint given Axial Tensile Force and Stress \leftrightarrows
$f x d=\sqrt{\frac{4 \cdot L}{\sigma t_{\text {rod }} \cdot \pi}}$
ex $35.68248 \mathrm{~mm}=\sqrt{\frac{4 \cdot 50000 \mathrm{~N}}{50 \mathrm{~N} / \mathrm{mm}^{2} \cdot \pi}}$
27) Thickness of Cotter given Compressive Stress in Socket
$\mathrm{fx} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \sigma_{\mathrm{cso}}}$
ex $10 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 125 \mathrm{~N} / \mathrm{mm}^{2}}$
28) Thickness of Cotter given Compressive Stress in Spigot
$\mathrm{fx} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{\sigma_{\mathrm{c} 1} \cdot \mathrm{~d}_{2}}$
Open Calculator
ex $10.08065 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{124 \mathrm{~N} / \mathrm{mm}^{2} \cdot 40 \mathrm{~mm}}$

29）Thickness of Cotter given Shear Stress in Cotter
$f \mathrm{fx} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{L}}{2 \cdot \tau_{\mathrm{co}} \cdot \mathrm{b}}$
ex $21.47766 \mathrm{~mm}=\frac{50000 \mathrm{~N}}{2 \cdot 24 \mathrm{~N} / \mathrm{mm}^{2} \cdot 48.5 \mathrm{~mm}}$
30）Thickness of Cotter given Tensile Stress in Socket
$f \times \mathrm{t}_{\mathrm{c}}=\frac{\left(\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)\right)-\frac{\mathrm{L}_{\mathrm{cot}}}{\sigma_{\mathrm{t}} \mathrm{so}}}{\mathrm{d}_{1}-\mathrm{d}_{2}}$
Open Calculator 〔
ex $65.48297 \mathrm{~mm}=\frac{\left(\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)\right)-\frac{5000 \mathrm{~N}}{42.8 \mathrm{~N} / \mathrm{mm}^{2}}}{54 \mathrm{~mm}-40 \mathrm{~mm}}$
31）Thickness of Cotter Joint
$f \mathrm{f} \mathrm{t}_{\mathrm{c}}=0.31 \cdot \mathrm{~d}$
Open Calculator
ex $9.61 \mathrm{~mm}=0.31 \cdot 31 \mathrm{~mm}$
32）Thickness of Cotter Joint given Bending Stress in Cotter
$\mathrm{fx} \mathrm{t}_{\mathrm{c}}=\left(2 \cdot \mathrm{~d}_{4}+\mathrm{d}_{2}\right) \cdot\left(\frac{\mathrm{L}}{4 \cdot \mathrm{~b}^{2} \cdot \sigma_{\mathrm{b}}}\right)$
ex $10.84502 \mathrm{~mm}=(2 \cdot 80 \mathrm{~mm}+40 \mathrm{~mm}) \cdot\left(\frac{50000 \mathrm{~N}}{4 \cdot(48.5 \mathrm{~mm})^{2} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2}}\right)$
33）Thickness of Spigot Collar when Rod Diameter is Available
$f_{x} \mathrm{t}_{1}=0.45 \cdot \mathrm{~d}$
ex $13.95 \mathrm{~mm}=0.45 \cdot 31 \mathrm{~mm}$

> Design of Cotter Joint Formulas...
34) Width of Cotter by Bending Consideration
$f \mathbf{f x}=\left(3 \cdot \frac{L}{t_{c} \cdot \sigma_{b}} \cdot\left(\frac{\mathrm{~d}_{2}}{4}+\frac{\mathrm{d}_{4}-\mathrm{d}_{2}}{6}\right)\right)^{0.5}$
Open Calculator
ex $42.68674 \mathrm{~mm}=\left(3 \cdot \frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 98 \mathrm{~N} / \mathrm{mm}^{2}} \cdot\left(\frac{40 \mathrm{~mm}}{4}+\frac{80 \mathrm{~mm}-40 \mathrm{~mm}}{6}\right)\right)^{0.5}$
35) Width of Cotter by Shear Consideration
$f \mathrm{x} \quad \mathrm{b}=\frac{\mathrm{V}}{2 \cdot \tau_{\mathrm{co}} \cdot \mathrm{t}_{\mathrm{c}}}$
Open Calculator
ex $35.41667 \mathrm{~mm}=\frac{23800 \mathrm{~N}}{2 \cdot 24 \mathrm{~N} / \mathrm{mm}^{2} \cdot 14 \mathrm{~mm}}$

Strength and Stress

36) Bending Stress in Cotter of Cotter Joint
$f_{\mathrm{x}} \sigma_{\mathrm{b}}=\left(3 \cdot \frac{\mathrm{~L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{b}^{2}}\right) \cdot\left(\frac{\mathrm{d}_{2}+2 \cdot \mathrm{~d}_{4}}{12}\right)$
ex $75.91516 \mathrm{~N} / \mathrm{mm}^{2}=\left(3 \cdot \frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot(48.5 \mathrm{~mm})^{2}}\right) \cdot\left(\frac{40 \mathrm{~mm}+2 \cdot 80 \mathrm{~mm}}{12}\right)$
37) Compressive Stress in Socket of Cotter Joint given Diameter of Spigot and of Socket Collar
$f \mathrm{x} \sigma_{\mathrm{cso}}=\frac{\mathrm{L}}{\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{t}_{\mathrm{c}}}$
ex $89.28571 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 14 \mathrm{~mm}}$
38) Compressive Stress in Spigot of Cotter Joint Considering Crushing Failure
$f \mathbf{x} \sigma_{\mathrm{c} 1}=\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}_{2}}$
ex $89.28571 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 40 \mathrm{~mm}}$
39) Compressive Stress of Spigot
$f \mathbf{x} \sigma_{\mathrm{c} 1}=\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}_{2}}$
Open Calculator ©
ex $89.28571 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{14 \mathrm{~mm} \cdot 40 \mathrm{~mm}}$
40) Shear Stress in Cotter given Cotter Thickness and Width
$\mathrm{f} \mathbf{x} \tau_{\mathrm{co}}=\frac{\mathrm{L}}{2 \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{b}}$
Open Calculator
ex $36.81885 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot 14 \mathrm{~mm} \cdot 48.5 \mathrm{~mm}}$
41) Shear Stress in Socket of Cotter Joint given Inner and Outer Diameter of Socket
$\mathrm{fx} \tau_{\mathrm{so}}=\frac{\mathrm{L}}{2 \cdot\left(\mathrm{~d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c}}$
ex $28.40909 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 22 \mathrm{~mm}}$
42) Shear Stress in Spigot of Cotter Joint given Diameter of Spigot and Load
$\mathrm{fx} \tau_{\mathrm{sp}}=\frac{\mathrm{L}}{2 \cdot \mathrm{a} \cdot \mathrm{d}_{2}}$
ex $26.59574 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot 23.5 \mathrm{~mm} \cdot 40 \mathrm{~mm}}$
43) Tensile Stress in Rod of Cotter Joint
$f \mathrm{x} \sigma \mathrm{t}_{\mathrm{rod}}=\frac{4 \cdot \mathrm{~L}}{\pi \cdot \mathrm{~d}^{2}}$
ex $66.24555 \mathrm{~N} / \mathrm{mm}^{2}=\frac{4 \cdot 50000 \mathrm{~N}}{\pi \cdot(31 \mathrm{~mm})^{2}}$
44) Tensile Stress in Socket of Cotter Joint given Outer and Inner Diameter of Socket
$f \mathrm{f}\left(\sigma_{\mathrm{t}} \mathrm{So}\right)=\frac{\mathrm{L}}{\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}$
ex $59.69551 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-14 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})}$
45) Tensile Stress in Spigot of Cotter Joint given Diameter of Spigot, Thickenss of Cotter and Load
$f \mathrm{fx}\left(\sigma_{\mathrm{t}} \mathrm{sp}\right)=\frac{\mathrm{L}}{\frac{\pi \cdot \mathrm{d}_{2}^{2}}{4}-\mathrm{d}_{2} \cdot \mathrm{t}_{\mathrm{c}}}$
ex $71.77338 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{\frac{\pi \cdot(40 \mathrm{~mm})^{2}}{4}-40 \mathrm{~mm} \cdot 14 \mathrm{~mm}}$

Variables Used

- a Gap between End of Slot to End of Spigot (Millimeter)
- A Cross Sectional Area of Socket (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Cross Sectional Area of Spigot (Square Millimeter)
- b Mean Width of Cotter (Millimeter)
- c Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- \mathbf{d}_{1} Outside Diameter of Socket (Millimeter)
- $\mathbf{d}_{\mathbf{2}}$ Diameter of Spigot (Millimeter)
- \mathbf{d}_{3} Diameter of Spigot Collar (Millimeter)
- \mathbf{d}_{4} Diameter of Socket Collar (Millimeter)
- L Load on Cotter Joint (Newton)
- $\mathrm{L}_{\text {cot }}$ Load at Cotter Joint (Newton)
- $\mathbf{t}_{\mathbf{1}}$ Thickness of Spigot Collar (Millimeter)
- $\mathbf{t}_{\mathbf{c}}$ Thickness of Cotter (Millimeter)
- V Shear Force on Cotter (Newton)
- $\sigma_{\mathbf{b}}$ Bending Stress in Cotter (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c}}$ Crushing Stress induced in Cotter (Newton per Square Millimeter)
- $\sigma_{\mathbf{c} 1}$ Compressive Stress in Spigot (Newton per Square Millimeter)
- $\sigma_{\text {cso }}$ Compressive Stress In Socket (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t}} \mathbf{S O}$ Tensile Stress In Socket (Newton per Square Millimeter)
- $\sigma_{\mathbf{t}} \mathbf{s p}$ Tensile Stress In Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma} \mathbf{t}_{\text {rod }}$ Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{c o}}$ Shear Stress in Cotter (Newton per Square Millimeter)
- $\mathbf{T}_{\text {so }}$ Shear Stress in Socket (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s p}}$ Shear Stress in Spigot (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm^{2}) Area Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion $\boxed{\checkmark}$

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

