

Design of Cotter Joint Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 Design of Cotter Joint Formulas

Design of Cotter Joint

Forces and Loads on Joint &

1) Force on Cotter given Shear Stress in Cotter 🗗

fx
$$[\mathrm{L} = 2 \cdot \mathrm{t_c} \cdot \mathrm{b} \cdot \mathrm{ au_{co}}]$$

Open Calculator

 $\textbf{ex} \ 32592 \text{N} = 2 \cdot 14 \text{mm} \cdot 48.5 \text{mm} \cdot 24 \text{N/mm}^2$

2) Load Taken by Cotter Joint Rod given Tensile Stress in Rod

 $\mathbf{L} = rac{\pi \cdot \mathrm{d}^2 \cdot \mathrm{\sigma t_{rod}}}{4}$

Open Calculator

ex $37738.38N = \frac{\pi \cdot (31 \text{mm})^2 \cdot 50 \text{N/mm}^2}{4}$

3) Load Taken by Socket of Cotter Joint given Compressive Stress

 $\mathbf{L} = \sigma_{\mathrm{cso}} \cdot (\mathrm{d}_4 - \mathrm{d}_2) \cdot \mathrm{t_c}$

Open Calculator 🗗

 $ext{ex} 70000 ext{N} = 125 ext{N/mm}^2 \cdot (80 ext{mm} - 40 ext{mm}) \cdot 14 ext{mm}$

4) Load Taken by Socket of Cotter Joint given Shear Stress in Socket

 $L = 2 \cdot (\mathrm{d}_4 - \mathrm{d}_2) \cdot \mathrm{c} \cdot \mathrm{ au_{so}}$

Open Calculator 🗗

5) Load Taken by Socket of Cotter Joint given Tensile Stress in Socket

 $\mathbf{E} = (\sigma_{
m t} {
m so}) \cdot \left(rac{\pi}{4} \cdot \left({
m d}_1^2 - {
m d}_2^2
ight) - {
m t_c} \cdot \left({
m d}_1 - {
m d}_2
ight)
ight)$

Open Calculator 🗗

ex

 $\boxed{35848.59 \text{N} = 42.8 \text{N}/\text{mm}^2 \cdot \left(\frac{\pi}{4} \cdot \left((54 \text{mm})^2 - (40 \text{mm})^2 \right) - 14 \text{mm} \cdot (54 \text{mm} - 40 \text{mm}) \right)}$

6) Load Taken by Spigot of Cotter Joint given Compressive Stress in Spigot Considering Crushing Failure

fx $L = t_c \cdot d_2 \cdot \sigma_{c1}$

Open Calculator

7) Load Taken by Spigot of Cotter Joint given Shear Stress in Spigot

fx $L=2\cdot a\cdot d_2\cdot au_{
m sp}$

Open Calculator

 $\texttt{ex} \ 48880 \texttt{N} = 2 \cdot 23.5 \texttt{mm} \cdot 40 \texttt{mm} \cdot 26 \texttt{N} / \texttt{mm}^2$

8) Maximum Load taken by Cotter Joint given Spigot Diameter, Thickness and Stress

 $\mathbf{L} = \left(rac{\pi}{4}\cdot \mathrm{d}_2^2 - \mathrm{d}_2\cdot \mathrm{t_c}
ight)\cdot (\sigma_\mathrm{t}\mathrm{sp})$

Open Calculator

 $31696.99 \text{N} = \left(\frac{\pi}{4} \cdot (40 \text{mm})^2 - 40 \text{mm} \cdot 14 \text{mm}\right) \cdot 45.5 \text{N/mm}^2$

Joint Geometry and Dimensions 🗗

9) Cross Section Area of Socket End Resisting Shear Failure

 $\mathbf{K} \mathbf{A} = (\mathbf{d}_4 - \mathbf{d}_2) \cdot \mathbf{c}$

Open Calculator

10) Cross Section Area of Socket of Cotter Joint Prone to Failure

 $\mathbf{K} = rac{\pi}{4} \cdot \left(\mathrm{d}_1^2 - \mathrm{d}_2^2
ight) - \mathrm{t_c} \cdot \left(\mathrm{d}_1 - \mathrm{d}_2
ight)$

Open Calculator

 $837.584 \text{mm}^2 = \frac{\pi}{4} \cdot \left((54 \text{mm})^2 - (40 \text{mm})^2 \right) - 14 \text{mm} \cdot (54 \text{mm} - 40 \text{mm})$

11) Cross Section Area of Spigot of Cotter Joint Prone to Failure

 $\mathbf{K} \mathbf{A}_{\mathrm{s}} = rac{\pi \cdot \mathrm{d}_2^2}{4} - \mathrm{d}_2 \cdot \mathrm{t_c}$

Open Calculator 🖸

 $ext{ex} 696.6371 ext{mm}^2 = rac{\pi \cdot (40 ext{mm})^2}{4} - 40 ext{mm} \cdot 14 ext{mm}$

12) Diameter of Rod of Cotter Joint given Socket Collar Diameter

 $\mathbf{fx} \left[\mathrm{d} = rac{\mathrm{d}_4}{2.4}
ight]$

Open Calculator

 $= \frac{80 \text{mm}}{2.4}$

13) Diameter of Rod of Cotter Joint given Spigot Collar Diameter

 $d = \frac{d_3}{1.5}$

Open Calculator

$\boxed{\mathbf{ex} \quad 32\mathrm{mm} = \frac{48\mathrm{mm}}{1.5}}$

14) Diameter of Rod of Cotter Joint given Thickness of Cotter

 $\mathrm{fx} = \frac{\mathrm{t_c}}{0.31}$

Open Calculator

15) Diameter of Rod of Cotter Joint given Thickness of Spigot Collar 🗗

 \mathbf{f} $\mathbf{d} = rac{\mathbf{t}_1}{0.45}$

Open Calculator

28.88889mm = $\frac{13$ mm}{0.45}

16) Diameter of Socket Collar given Rod Diameter

fx $d_4 = 2.4 \cdot d$

Open Calculator

 $\boxed{74.4 \mathrm{mm} = 2.4 \cdot 31 \mathrm{mm}}$

17) Diameter of Socket Collar of Cotter Joint given Bending Stress in Cotter

 $\left|\mathbf{f}_{\mathbf{k}}
ight|\mathrm{d}_{4}=rac{4\cdot\mathrm{b}^{2}\cdot\sigma_{\mathrm{b}}\cdotrac{\mathrm{t}_{\mathrm{c}}}{\mathrm{L}}-\mathrm{d}_{2}}{2}$

Open Calculator

18) Diameter of Socket Collar of Cotter Joint given Compressive Stress

 $egin{aligned} \mathbf{K} d_4 = d_2 + rac{L}{t_c \cdot \sigma_{c1}} \end{aligned}$

Open Calculator

 $= 20 \times 10^{-2} = 20 \times 10^{-2} = 10^{-2} \times 10^{-2} = 10^{-2} \times 10^{-2} \times 10^{-2} = 10^{-2} \times 1$

19) Diameter of socket collar of cotter joint given shear stress in socket

fx $d_4 = rac{L}{2 \cdot c \cdot au_{
m so}} + d_2$

Open Calculator

$$oxed{ex} 85.45455 \mathrm{mm} = rac{50000 \mathrm{N}}{2 \cdot 22 \mathrm{mm} \cdot 25 \mathrm{N/mm^2}} + 40 \mathrm{mm}$$

20) Diameter of Spigot Collar given Rod Diameter 🗗

fx $d_3 = 1.5 \cdot d$

Open Calculator

21) Diameter of Spigot of Cotter Joint given Bending Stress in Cotter

 \mathbf{f} $\mathbf{d}_2 = 4 \cdot \mathbf{b}^2 \cdot \mathbf{\sigma}_\mathbf{b} \cdot rac{\mathbf{t}_\mathbf{c}}{\mathbf{L}} - 2 \cdot \mathbf{d}_4$

Open Calculator

22) Diameter of Spigot of Cotter Joint given Compressive Stress

 $d_2 = d_4 - rac{L}{t_c \cdot \sigma_{c1}}$

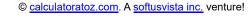
23) Diameter of Spigot of Cotter Joint given Shear Stress in Spigot

 $extbf{d}_2 = rac{ ext{L}}{2 \cdot ext{a} \cdot au_{ ext{sp}}}$

Open Calculator

Open Calculator

 $\boxed{ 40.91653 \text{mm} = \frac{50000 \text{N}}{2 \cdot 23.5 \text{mm} \cdot 26 \text{N/mm}^2} }$


24) Inside Diameter of Socket of Cotter Joint given Shear Stress in Socket 🗗

 $d_2 = d_4 - rac{L}{2 \cdot c \cdot au_{
m so}}$

Open Calculator

 $oxed{ex} 34.54545 ext{mm} = 80 ext{mm} - rac{50000 ext{N}}{2 \cdot 22 ext{mm} \cdot 25 ext{N/mm}^2}$

25) Minimum Diameter of Spigot in Cotter Joint Subjected to Crushing Stress

 $\mathbf{K} \, \mathrm{d}_2 = rac{\mathrm{L}}{\sigma_\mathrm{c} \cdot \mathrm{t_c}}$

Open Calculator

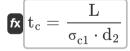
$$\boxed{ 28.34467 \text{mm} = \frac{50000 \text{N}}{126 \text{N}/\text{mm}^2 \cdot 14 \text{mm}} }$$

26) Minimum Rod Diameter in Cotter Joint given Axial Tensile Force and Stress

 $\mathrm{d} = \sqrt{rac{4\cdot\mathrm{L}}{\sigma\mathrm{t}_{\mathrm{rod}}\cdot\pi}}$

Open Calculator

ex
$$35.68248 \mathrm{mm} = \sqrt{\frac{4 \cdot 50000 \mathrm{N}}{50 \mathrm{N/mm^2} \cdot \pi}}$$


27) Thickness of Cotter given Compressive Stress in Socket

 $\mathbf{f}\mathbf{x}$ $\mathbf{t}_{\mathrm{c}}=rac{\mathrm{L}}{(\mathrm{d}_{4}-\mathrm{d}_{2})\cdot\sigma_{\mathrm{cso}}}$

Open Calculator

$$ext{ex} 10 ext{mm} = rac{50000 ext{N}}{(80 ext{mm} - 40 ext{mm}) \cdot 125 ext{N/mm}^2}$$

28) Thickness of Cotter given Compressive Stress in Spigot 🚰

Open Calculator

$$10.08065 \mathrm{mm} = rac{50000 \mathrm{N}}{124 \mathrm{N/mm^2 \cdot 40 mm}}$$

29) Thickness of Cotter given Shear Stress in Cotter

 $\text{fx} \, t_c = \frac{L}{2 \cdot \tau_{co} \cdot b}$

Open Calculator

 $= \frac{50000 N}{2 \cdot 24 N / mm^2 \cdot 48.5 mm}$

30) Thickness of Cotter given Tensile Stress in Socket

 $\mathbf{f_c} = rac{\left(rac{\pi}{4}\cdot\left(\mathrm{d}_1^2-\mathrm{d}_2^2
ight)
ight)-rac{\mathrm{L}_{\mathrm{cot}}}{\sigma_{\mathrm{t}}\mathrm{so}}}{\mathrm{d}_1-\mathrm{d}_2}$

Open Calculator

31) Thickness of Cotter Joint

fx $t_{
m c} = 0.31 \cdot {
m d}$

Open Calculator

 $\texttt{ex} \ 9.61 \text{mm} = 0.31 \cdot 31 \text{mm}$

32) Thickness of Cotter Joint given Bending Stress in Cotter

 $\mathbf{f_c} = (2 \cdot \mathrm{d_4} + \mathrm{d_2}) \cdot \left(rac{\mathrm{L}}{4 \cdot \mathrm{b}^2 \cdot \mathrm{\sigma_b}}
ight)$

Open Calculator

 $\boxed{ 10.84502 \mathrm{mm} = \left(2 \cdot 80 \mathrm{mm} + 40 \mathrm{mm} \right) \cdot \left(\frac{50000 \mathrm{N}}{4 \cdot \left(48.5 \mathrm{mm} \right)^2 \cdot 98 \mathrm{N/mm^2}} \right) }$

33) Thickness of Spigot Collar when Rod Diameter is Available

fx ${f t}_1 = 0.45 \cdot {f d}$

Open Calculator

 $\texttt{ex} \ 13.95 \texttt{mm} = 0.45 \cdot 31 \texttt{mm}$

34) Width of Cotter by Bending Consideration 🗗

$$b = \left(3 \cdot rac{L}{t_c \cdot \sigma_b} \cdot \left(rac{d_2}{4} + rac{d_4 - d_2}{6}
ight)
ight)^{0.5}$$

Open Calculator

35) Width of Cotter by Shear Consideration

$$b = rac{V}{2 \cdot au_{co} \cdot t_c}$$

Open Calculator

$$= \frac{23800 \text{N}}{2 \cdot 24 \text{N/mm}^2 \cdot 14 \text{mm}}$$

Strength and Stress

36) Bending Stress in Cotter of Cotter Joint

$$\sigma_{\mathrm{b}} = \left(3 \cdot rac{\mathrm{L}}{\mathrm{t_c} \cdot \mathrm{b}^2}
ight) \cdot \left(rac{\mathrm{d}_2 + 2 \cdot \mathrm{d}_4}{12}
ight)$$

Open Calculator

$$75.91516 \text{N/mm}^2 = \left(3 \cdot \frac{50000 \text{N}}{14 \text{mm} \cdot \left(48.5 \text{mm}\right)^2}\right) \cdot \left(\frac{40 \text{mm} + 2 \cdot 80 \text{mm}}{12}\right)$$

37) Compressive Stress in Socket of Cotter Joint given Diameter of Spigot and of Socket Collar

fx
$$\sigma_{
m cso} = rac{
m L}{({
m d}_4 - {
m d}_2) \cdot {
m t}_{
m c}}$$

Open Calculator

$$ext{ex} 89.28571 ext{N/mm}^2 = rac{50000 ext{N}}{(80 ext{mm} - 40 ext{mm}) \cdot 14 ext{mm}}$$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

38) Compressive Stress in Spigot of Cotter Joint Considering Crushing Failure Open Calculator

 $\sigma_{c1} = rac{L}{t_c \cdot d_2}$

 $89.28571 \mathrm{N/mm^2} = rac{50000 \mathrm{N}}{14 \mathrm{mm} \cdot 40 \mathrm{mm}}$

39) Compressive Stress of Spigot

 $\left| \mathbf{f}_{\mathbf{c}} \right| \sigma_{\mathrm{c}1} = rac{\mathrm{L}}{\mathrm{t}_{c} \cdot \mathrm{d}_{2}} \left| \right|$

 $oxed{ex} 89.28571 ext{N/mm}^2 = rac{50000 ext{N}}{14 ext{mm} \cdot 40 ext{mm}}$

40) Shear Stress in Cotter given Cotter Thickness and Width

 $au_{
m co} = rac{
m L}{2 \cdot {
m t}_c \cdot {
m b}}$

 $oxed{ex} 36.81885 \mathrm{N/mm^2} = rac{50000 \mathrm{N}}{2 \cdot 14 \mathrm{mm} \cdot 48.5 \mathrm{mm}}$

- $au_{
 m so} = rac{
 m L}{2\cdot(d_4-d_2)\cdot c}$

= $28.40909 \mathrm{N/mm^2} = rac{50000 \mathrm{N}}{2 \cdot (80 \mathrm{mm} - 40 \mathrm{mm}) \cdot 22 \mathrm{mm}}$

42) Shear Stress in Spigot of Cotter Joint given Diameter of Spigot and Load

41) Shear Stress in Socket of Cotter Joint given Inner and Outer Diameter of Socket

 $au_{
m sp} = rac{
m L}{2 \cdot {
m a} \cdot {
m d}_{
m a}}$

 $ext{ex} 26.59574 ext{N/mm}^2 = rac{50000 ext{N}}{2 \cdot 23.5 ext{mm} \cdot 40 ext{mm}}$

43) Tensile Stress in Rod of Cotter Joint

extstyle ext

Open Calculator

= $66.24555 \mathrm{N/mm^2} = rac{4 \cdot 50000 \mathrm{N}}{\pi \cdot \left(31 \mathrm{mm}\right)^2}$

44) Tensile Stress in Socket of Cotter Joint given Outer and Inner Diameter of Socket

T. Open Calculator

 $\sigma_{\mathrm{t}}(\sigma_{\mathrm{t}} \mathrm{so}) = rac{\mathrm{L}}{rac{\pi}{4} \cdot \left(\mathrm{d}_1^2 - \mathrm{d}_2^2
ight) - \mathrm{t_c} \cdot \left(\mathrm{d}_1 - \mathrm{d}_2
ight)}$

 $59.69551 \text{N/mm}^2 = \frac{50000 \text{N}}{\frac{\pi}{4} \cdot \left(\left(54 \text{mm} \right)^2 - \left(40 \text{mm} \right)^2 \right) - 14 \text{mm} \cdot \left(54 \text{mm} - 40 \text{mm} \right)}$

45) Tensile Stress in Spigot of Cotter Joint given Diameter of Spigot, Thickenss of Cotter and Load

 $oldsymbol{ au_t} (\sigma_t sp) = rac{L}{rac{\pi \cdot d_2^2}{4} - d_2 \cdot t_c}$

Open Calculator

 $ag{71.77338 ext{N/mm}^2 = rac{50000 ext{N}}{rac{\pi \cdot (40 ext{mm})^2}{4} - 40 ext{mm} \cdot 14 ext{mm}}}$

Variables Used

- a Gap between End of Slot to End of Spigot (Millimeter)
- A Cross Sectional Area of Socket (Square Millimeter)
- As Cross Sectional Area of Spigot (Square Millimeter)
- **b** Mean Width of Cotter (Millimeter)
- C Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- d₁ Outside Diameter of Socket (Millimeter)
- **d**₂ Diameter of Spigot (Millimeter)
- d₃ Diameter of Spigot Collar (Millimeter)
- d₄ Diameter of Socket Collar (Millimeter)
- L Load on Cotter Joint (Newton)
- L_{cot} Load at Cotter Joint (Newton)
- t₁ Thickness of Spigot Collar (Millimeter)
- t_c Thickness of Cotter (Millimeter)
- V Shear Force on Cotter (Newton)
- σ_b Bending Stress in Cotter (Newton per Square Millimeter)
- σ_c Crushing Stress induced in Cotter (Newton per Square Millimeter)
- σ_{c1} Compressive Stress in Spigot (Newton per Square Millimeter)
- σ_{cso} Compressive Stress In Socket (Newton per Square Millimeter)
- σ_t so Tensile Stress In Socket (Newton per Square Millimeter)
- $\sigma_t sp$ Tensile Stress In Spigot (Newton per Square Millimeter)
- σt_{rod} Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- T_{CO} Shear Stress in Cotter (Newton per Square Millimeter)
- T_{SO} Shear Stress in Socket (Newton per Square Millimeter)
- T_{SD} Shear Stress in Spigot (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)

 Area Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas

- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/8/2024 | 9:18:35 AM UTC

Please leave your feedback here...

