

Important Formulas on Reversible Reaction

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 23 Important Formulas on Reversible Reaction

1) Backward Reaction Rate Constant for 2nd Order Opposed by 1st Order Reaction C
(k2b') = (kr') ·
$$\frac{(A_0 - x_{eq}) \cdot (B_0 - x_{eq})}{x_{eq}}$$

Correct C
(k2b') = (kr') · $\frac{(A_0 - x_{eq}) \cdot (B_0 - x_{eq})}{x_{eq}}$
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction C
2) 0.000378L/(mol*s) = 0.00618L/(mol*s) · $\frac{(100 mol/L - 70 mol/L) \cdot (80 mol/L - 70 mol/L)}{(70 mol/L)^2}$
3) Backward Reaction Rate Constant given Keq and Kf
2) 0.000378L/(mol*s) = 16.3 · 0.00618L/(mol*s)
4) Concentration of Product C given kf and kb
2) 0.100734L/(mol*s) = 16.3 · 0.00618L/(mol*s)
4) Concentration of Product C given kf and kb
2) 19.50758mol/L = $\frac{0.00618L/(mol*s)}{0.000378L/(mol*s)} \cdot (\frac{0.600 mol/L \cdot 0.700 mol/L}{0.352 mol/L})$
5) Concentration of Product D given kf and kb
2) 0.353952mol/L = $\frac{0.00618L/(mol*s)}{0.000378L/(mol*s)} \cdot (\frac{0.600 mol/L \cdot 0.700 mol/L}{19.4 mol/L})$

11) Forward Rxn Rate Const for 2nd Order Opposed by 2nd Order Rxn given Ini Conc of Reactant A 🖸

$$\begin{split} & \textbf{K} \left(k_{fA}' \right) = \left(\frac{1}{t} \right) \cdot \left(\frac{x_{eq}^2}{2 \cdot A_0 \cdot (A_0 - x_{eq})} \right) \cdot \ln \left(\frac{x \cdot (A_0 - 2 \cdot x_{eq}) + A_0 \cdot x_{eq}}{A_0 \cdot (x_{eq} - x)} \right) \end{split} \\ & \textbf{Open Calculator Calcu$$

$$0.074415 \text{L/(mol*s)} = \left(\frac{1}{3600 \text{s}}\right) \cdot \left(\frac{(70 \text{mol/L})^2}{2 \cdot 100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right) \cdot \ln\left(\frac{27.5 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}{100 \text{mol/L} \cdot (100 \text{mol/L} - 70 \text{mol/L})}\right)$$

12) Product Conc for 1st Order Opposed by 1st Order Rxn given Initial Conc of B greater than 0 🚰

$$\mathbf{\hat{x}} = \mathrm{x}_{\mathrm{eq}} \cdot \left(1 - \exp\left(-\mathrm{k}_{\mathrm{f}} \cdot \left(rac{\mathrm{A}_{0} + \mathrm{B}_{0}}{\mathrm{B}_{0} + \mathrm{x}_{\mathrm{eq}}}
ight) \cdot \mathrm{t}
ight)
ight)$$

$$\underbrace{ 24.04203 \text{mol}/\text{L} = 70 \text{mol}/\text{L} \cdot \left(1 - \exp\left(-0.0000974 \text{s}^{-1} \cdot \left(\frac{100 \text{mol}/\text{L} + 80 \text{mol}/\text{L}}{80 \text{mol}/\text{L} + 70 \text{mol}/\text{L}} \right) \cdot 3600 \text{s} \right) } \right)$$

13) Product Conc of First Order Opposed by First Order Reaction given Initial Conc of Reactant 🗹

ex
$$6E^-7L/(mol^*s) = 0.0000974s^{-1} \cdot \frac{100mol/L - 70mol/L}{(70mol/L)^2}$$

4/9

Open Calculator

16) Rate Constant for Forward Reaction
$$\mathbb{C}$$

(a) $k_{f} = \left(\frac{1}{t}\right) \cdot \left(\frac{x_{eq}}{2 \cdot A_{0} - x_{eq}}\right) \cdot \ln\left(\frac{A_{0} \cdot x_{eq} + x \cdot (A_{0} - x_{eq})}{A_{0} \cdot (x_{eq} - x)}\right)$
(c) $(2 \times A_{0} - x_{eq}) \cdot \ln\left(\frac{A_{0} \cdot x_{eq} + x \cdot (A_{0} - x_{eq})}{100 \operatorname{col}/L + 27.5\operatorname{mol}/L \cdot (100 \operatorname{mol}/L - 27.5\operatorname{mol}/L)}\right)$
(c) $(3 \times 10^{-5} \mathrm{S}^{-1} = \left(\frac{1}{3600 \mathrm{s}}\right) \cdot \left(\frac{70 \operatorname{mol}/L}{2 \cdot 100 \operatorname{mol}/L - 70 \operatorname{mol}/L}\right) \cdot \ln\left(\frac{100 \operatorname{mol}/L + 70 \operatorname{mol}/L + 27.5\operatorname{mol}/L \cdot (100 \operatorname{mol}/L - 27.5\operatorname{mol}/L)}{100 \operatorname{mol}/L - (70 \operatorname{mol}/L) - 27.5\operatorname{mol}/L)}\right)$
(7) Reactant Concentration at given Time 1 (2)
(2) $(A = A_{0} \cdot \left(\frac{k_{f}}{k_{f} + k_{b}}\right) \cdot \left(\left(\frac{k_{b}}{k_{f}}\right) + \exp(-(k_{f} + k_{b}) \cdot t)\right)$
(2) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(3) $(A = A_{0} \cdot \left(\frac{k_{f}}{k_{f} + k_{b}}\right) \cdot \left(\left(\frac{k_{b}}{0.000974 \mathrm{s}^{-1}} + 0.0000418 \mathrm{s}^{-1}\right) \cdot \left(\left(\frac{0.0000418 \mathrm{s}^{-1}}{0.0000974 \mathrm{s}^{-1}}\right) + \exp(-(0.0000974 \mathrm{s}^{-1} + 0.0000418 \mathrm{s}^{-1}))$
(3) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(4) Time taken for 1st Order Opposed by 1st Order Reaction (2)
(3) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(4) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(5) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(6) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(7) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(8) $(2 \times 10^{-2} \mathrm{Colorestrat})$
(9) $(2 \times 10^{-2} \mathrm{Colorestr$

5/9

21) Time taken for 2nd Order Opposed by 2nd Order Reaction given Initial Conc of Reactant B 🕑

$$\begin{split} & \textbf{fx} \hline \textbf{t}_{2nd} = \left(\frac{1}{k_{f}}\right) \cdot \left(\frac{x_{eq}^{2}}{2 \cdot B_{0} \cdot (B_{0} - x_{eq})}\right) \cdot \ln \left(\frac{x \cdot (B_{0} - 2 \cdot x_{eq}) + B_{0} \cdot x_{eq}}{B_{0} \cdot (x_{eq} - x)}\right) \end{split} \textbf{Open Calculator}$$

$$\boxed{74302.86\text{s} = \left(\frac{1}{0.00618\text{L}/(\text{mol}*\text{s})}\right) \cdot \left(\frac{(70\text{mol/L})^2}{2 \cdot 80\text{mol/L} \cdot (80\text{mol/L} - 70\text{mol/L})}\right) \cdot \ln\left(\frac{27.5\text{mol/L} \cdot (80\text{mol/L} - 70\text{mol/L})}{80\text{mol/L} \cdot (70\text{mol/L})}\right)}$$

22) Time Taken for Completion of Reaction

$$\mathbf{K} = \left(rac{1}{k_{\mathrm{f}}}
ight) \cdot \left(rac{\mathrm{x}_{\mathrm{eq}}}{2 \cdot \mathrm{A}_{0} - \mathrm{x}_{\mathrm{eq}}}
ight) \cdot \ln \!\left(rac{\mathrm{A}_{0} \cdot \mathrm{x}_{\mathrm{eq}} + \mathrm{x} \cdot (\mathrm{A}_{0} - \mathrm{x}_{\mathrm{eq}})}{\mathrm{A}_{0} \cdot (\mathrm{x}_{\mathrm{eq}} - \mathrm{x})}
ight)$$

Open Calculator 🕑

$$\boxed{3374.533\mathrm{s} = \left(\frac{1}{0.0000974\mathrm{s}^{-1}}\right) \cdot \left(\frac{70\mathrm{mol/L}}{2\cdot100\mathrm{mol/L}-70\mathrm{mol/L}}\right) \cdot \ln\!\left(\frac{100\mathrm{mol/L}\cdot70\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}-27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}-27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}-27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/L}\cdot(100\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/L}+27.5\mathrm{mol/$$

23) Time taken when Initial Concentration of Reactant B greater than 0 🚰

٢٦

Variables Used

- [A]ea Concentration of Reactant A at Equilibrium (Mole per Liter)
- [B]eg Concentration of Reactant B at Equilibrium (Mole per Liter)
- [C]eq Concentration of Product C at Equilibrium (Mole per Liter)
- [D]_{ea} Concentration of Product D at Equilibrium (Mole per Liter)
- A Concentration of A at Time t (Mole per Liter)
- A₀ Initial Concentration of Reactant A (Mole per Liter)
- Bo Initial Concentration of Reactant B (Mole per Liter)
- **k**_b Backward Reaction Rate Constant (1 Per Second)
- kb' Backward Reaction Rate Constant for 2nd Order (Liter per Mole Second)
- kbbr' Backward Reaction Rate Constant given kf and Keq (Liter per Mole Second)
- kprc' Rate Constant of Backward Reaction (Liter per Mole Second)
- Keg Equilibrium Constant for Second Order Reaction
- Keam Equilibrium Constant
- **k**_f Forward Reaction Rate Constant (1 Per Second)
- kf' Forward Reaction Rate Constant for 2nd Order (Liter per Mole Second)
- kfA' Forward Reaction Rate Constant given A (Liter per Mole Second)
- kfB' Forward Reaction Rate Constant given B (Liter per Mole Second)
- k_{fr}' Forward Reaction Rate Constant given kf and Keq (Liter per Mole Second)
- k2b' Rate Constant for Backward Reaction (Cubic Meter per Mole Second)
- t Time (Second)
- t2nd Time for 2nd Order (Second)
- X Concentration of Product at Time t (Mole per Liter)
- Xeg Concentration of Reactant at Equilibrium (Mole per Liter)

Constants, Functions, Measurements used

- Function: exp, exp(Number) n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Molar Concentration in Mole per Liter (mol/L) Molar Concentration Unit Conversion
- Measurement: First Order Reaction Rate Constant in 1 Per Second (s⁻¹) First Order Reaction Rate Constant Unit Conversion
- Measurement: Second Order Reaction Rate Constant in Cubic Meter per Mole Second (m³/(mol*s)), Liter per Mole Second (L/(mol*s))

Second Order Reaction Rate Constant Unit Conversion 🕑

Check other formula lists

- Collision Theory and Chain Reactions Formulas 🖉
 Important Formulas on Reversible Reaction 🗹
- Enzyme Kinetics Formulas
- First Order Reaction Formulas
- Important Formulas on Enzyme Kinetics G

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/24/2024 | 3:05:48 PM UTC

Please leave your feedback here ...

- 9/9
- Second Order Reaction Formulas
- Zero Order Reaction Formulas