unitsconverters.com

Important Formulas on Reversible Reaction

Calculators!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 23 Important Formulas on Reversible Reaction

Important Formulas on Reversible Reaction ©

1) Backward Reaction Rate Constant for 2nd Order Opposed by 1st Order Reaction
$\mathrm{fx}\left(\mathrm{k} 2_{\mathrm{b}}{ }^{\prime}\right)=\left(\mathrm{k}_{\mathrm{f}}{ }^{\prime}\right) \cdot \frac{\left(\mathrm{A}_{0}-\mathrm{x}_{\mathrm{eq}}\right) \cdot\left(\mathrm{B}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{x}_{\mathrm{eq}}}$
ex $0.026486 \mathrm{~m}^{3} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right) \cdot \frac{(100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L}) \cdot(80 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L})}{70 \mathrm{~mol} / \mathrm{L}}$
2) Backward Reaction Rate Constant for 2nd Order Opposed by 2nd Order Reaction
$f \mathbf{f x}\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)=\left(\mathrm{k}_{\mathrm{f}}{ }^{\prime}\right) \cdot \frac{\left(\mathrm{A}_{0}-\mathrm{x}_{\mathrm{eq}}\right) \cdot\left(\mathrm{B}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{x}_{\mathrm{eq}}^{2}}$
ex $0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right) \cdot \frac{(100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L}) \cdot(80 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L})}{(70 \mathrm{~mol} / \mathrm{L})^{2}}$
3) Backward Reaction Rate Constant given Keq and kf
$\mathrm{fx}\left(\mathrm{k}_{\mathrm{bbr}}{ }^{\prime}\right)=\mathrm{K}_{\mathrm{eqm}} \cdot\left(\mathrm{k}_{\mathrm{f}}{ }^{\prime}\right)$
ex $0.100734 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=16.3 \cdot 0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)$
4) Concentration of Product C given kf and kb
$\mathrm{fx}[\mathrm{C}]_{\mathrm{eq}}=\frac{\mathrm{k}_{\mathrm{f}}{ }^{\prime}}{\mathrm{k}_{\mathrm{b}}{ }^{\prime}} \cdot\left(\frac{[\mathrm{A}]_{\mathrm{eq}} \cdot[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{D}]_{\mathrm{eq}}}\right)$
ex $19.50758 \mathrm{~mol} / \mathrm{L}=\frac{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}{0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)} \cdot\left(\frac{0.600 \mathrm{~mol} / \mathrm{L} \cdot 0.700 \mathrm{~mol} / \mathrm{L}}{0.352 \mathrm{~mol} / \mathrm{L}}\right)$
5) Concentration of Product D given $k f$ and $k b$
$\mathrm{fx}_{\mathrm{x}}[\mathrm{D}]_{\mathrm{eq}}=\frac{\mathrm{k}_{\mathrm{f}}{ }^{\prime}}{\mathrm{k}_{\mathrm{b}}} \cdot\left(\frac{[\mathrm{A}]_{\mathrm{eq}} \cdot[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{C}]_{\mathrm{eq}}}\right)$
ex $0.353952 \mathrm{~mol} / \mathrm{L}=\frac{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}{0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)} \cdot\left(\frac{0.600 \mathrm{~mol} / \mathrm{L} \cdot 0.700 \mathrm{~mol} / \mathrm{L}}{19.4 \mathrm{~mol} / \mathrm{L}}\right)$
6) Concentration of Reactant A given kf and kb

\longleftarrow

$f \mathbf{f x}[\mathrm{~A}]_{\mathrm{eq}}=\frac{\mathrm{k}_{\mathrm{b}}{ }^{\prime}}{\mathrm{k}_{\mathrm{f}}{ }^{\prime}} \cdot\left(\frac{[\mathrm{C}]_{\mathrm{eq}} \cdot[\mathrm{D}]_{\mathrm{eq}}}{[\mathrm{B}]_{\mathrm{eq}}}\right)$
ex $0.596691 \mathrm{~mol} / \mathrm{L}=\frac{0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)} \cdot\left(\frac{19.4 \mathrm{~mol} / \mathrm{L} \cdot 0.352 \mathrm{~mol} / \mathrm{L}}{0.700 \mathrm{~mol} / \mathrm{L}}\right)$
7) Concentration of Reactant B given kf and kb
$f \mathrm{x}[\mathrm{B}]_{\mathrm{eq}}=\frac{\mathrm{k}_{\mathrm{b}}{ }^{\prime}}{\mathrm{k}_{\mathrm{f}}{ }^{\prime}} \cdot\left(\frac{[\mathrm{C}]_{\mathrm{eq}} \cdot[\mathrm{D}]_{\mathrm{eq}}}{[\mathrm{A}]_{\mathrm{eq}}}\right)$
ex $0.69614 \mathrm{~mol} / \mathrm{L}=\frac{0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)} \cdot\left(\frac{19.4 \mathrm{~mol} / \mathrm{L} \cdot 0.352 \mathrm{~mol} / \mathrm{L}}{0.600 \mathrm{~mol} / \mathrm{L}}\right)$
8) Equilibrium Rate Constant given kf and kb
$\mathrm{fx} \mathrm{K}_{\text {eqm }}=\frac{\mathrm{k}_{\mathrm{f}}{ }^{\prime}}{\mathrm{k}_{\mathrm{b}}{ }^{\prime}}$
ex $16.34921=\frac{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}{0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}$
9) Forward Rate Constant given Keq and kb
$\mathrm{fx}\left(\mathrm{k}_{\mathrm{fr}}{ }^{\prime}\right)=\mathrm{K}_{\mathrm{eq}} \cdot\left(\mathrm{k}_{\mathrm{b}}{ }^{\prime}\right)$
ex $0.02268 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=60 \cdot 0.000378 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)$
10) Forward Rxn Rate Const for 2nd Order Opposed by 1st Order Rxn given Ini Conc of Reactant B
$f \mathrm{fx}\left(\mathrm{k}_{\mathrm{fB}}{ }^{\prime}\right)=\left(\frac{1}{\mathrm{t}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}}{\mathrm{B}_{0}^{2}-\mathrm{x}_{\mathrm{eq}}^{2}}\right) \cdot \ln \left(\frac{\mathrm{x}_{\mathrm{eq}} \cdot\left(\mathrm{B}_{0}^{2}-\mathrm{x} \cdot \mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{B}_{0}^{2} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
$1.8 \mathrm{E}^{\wedge}-6 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=\left(\frac{1}{3600 \mathrm{~s}}\right) \cdot\left(\frac{70 \mathrm{~mol} / \mathrm{L}}{(80 \mathrm{~mol} / \mathrm{L})^{2}-(70 \mathrm{~mol} / \mathrm{L})^{2}}\right) \cdot \ln \left(\frac{70 \mathrm{~mol} / \mathrm{L} \cdot\left((80 \mathrm{~mol} / \mathrm{L})^{2}-27.5 \mathrm{~mol} / \mathrm{L}\right.}{(80 \mathrm{~mol} / \mathrm{L})^{2} \cdot(70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~m}}\right.$
11) Forward Rxn Rate Const for 2nd Order Opposed by $2 n d$ Order Rxn given Ini Conc of Reactant A
$f \mathbf{f x}\left(\mathrm{k}_{\mathrm{fA}}{ }^{\prime}\right)=\left(\frac{1}{\mathrm{t}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}^{2}}{2 \cdot \mathrm{~A}_{0} \cdot\left(\mathrm{~A}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}\right) \cdot \ln \left(\frac{\mathrm{x} \cdot\left(\mathrm{A}_{0}-2 \cdot \mathrm{x}_{\mathrm{eq}}\right)+\mathrm{A}_{0} \cdot \mathrm{x}_{\mathrm{eq}}}{\mathrm{A}_{0} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
Open Calculator ©
ex
$0.074415 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=\left(\frac{1}{3600 \mathrm{~s}}\right) \cdot\left(\frac{(70 \mathrm{~mol} / \mathrm{L})^{2}}{2 \cdot 100 \mathrm{~mol} / \mathrm{L} \cdot(100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L})}\right) \cdot \ln \left(\frac{27.5 \mathrm{~mol} / \mathrm{L} \cdot(100 \mathrm{~mol} / \mathrm{L}-}{100 \mathrm{~mol} / \mathrm{L} \cdot 1}\right.$
12) Product Conc for 1st Order Opposed by 1st Order Rxn given Initial Conc of B greater than 0
$\mathbf{f x} \mathbf{x}=\mathrm{x}_{\mathrm{eq}} \cdot\left(1-\exp \left(-\mathrm{k}_{\mathrm{f}} \cdot\left(\frac{\mathrm{A}_{0}+\mathrm{B}_{0}}{\mathrm{~B}_{0}+\mathrm{x}_{\mathrm{eq}}}\right) \cdot \mathrm{t}\right)\right)$
Open Calculator
ex $24.04203 \mathrm{~mol} / \mathrm{L}=70 \mathrm{~mol} / \mathrm{L} \cdot\left(1-\exp \left(-0.0000974 \mathrm{~s}^{-1} \cdot\left(\frac{100 \mathrm{~mol} / \mathrm{L}+80 \mathrm{~mol} / \mathrm{L}}{80 \mathrm{~mol} / \mathrm{L}+70 \mathrm{~mol} / \mathrm{L}}\right) \cdot 3600 \mathrm{~s}\right)\right)$
13) Product Conc of First Order Opposed by First Order Reaction given Initial Conc of Reactant
$\mathrm{fx} \mathrm{x}=\mathrm{x}_{\mathrm{eq}} \cdot\left(1-\exp \left(-\mathrm{k}_{\mathrm{f}} \cdot \mathrm{t} \cdot\left(\frac{\mathrm{A}_{0}}{\mathrm{x}_{\mathrm{eq}}}\right)\right)\right)$
ex $27.58165 \mathrm{~mol} / \mathrm{L}=70 \mathrm{~mol} / \mathrm{L} \cdot\left(1-\exp \left(-0.0000974 \mathrm{~s}^{-1} \cdot 3600 \mathrm{~s} \cdot\left(\frac{100 \mathrm{~mol} / \mathrm{L}}{70 \mathrm{~mol} / \mathrm{L}}\right)\right)\right)$
14) Product Concentration of 1st Order Opposed by 1st Order Reaction at given Time $t=$
$\mathrm{f} \mathbf{x}=\mathrm{x}_{\mathrm{eq}} \cdot\left(1-\exp \left(-\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \cdot \mathrm{t}\right)\right)$
ex $27.59038 \mathrm{~mol} / \mathrm{L}=70 \mathrm{~mol} / \mathrm{L} \cdot\left(1-\exp \left(-\left(0.0000974 \mathrm{~s}^{-1}+0.0000418 \mathrm{~s}^{-1}\right) \cdot 3600 \mathrm{~s}\right)\right)$
15) Rate Constant for Backward Reaction
$\mathrm{fx}\left(\mathrm{k}_{\mathrm{brc}}{ }^{\prime}\right)=\mathrm{k}_{\mathrm{f}} \cdot \frac{\mathrm{A}_{0}-\mathrm{x}_{\mathrm{eq}}}{\mathrm{x}_{\mathrm{eq}}^{2}}$
x $6 \mathrm{E}^{\wedge}-7 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)=0.0000974 \mathrm{~s}^{-1} \cdot \frac{100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L}}{(70 \mathrm{~mol} / \mathrm{L})^{2}}$
16) Rate Constant for Forward Reaction
$\mathrm{fx} \mathrm{k}_{\mathrm{f}}=\left(\frac{1}{\mathrm{t}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}}{2 \cdot \mathrm{~A}_{0}-\mathrm{x}_{\mathrm{eq}}}\right) \cdot \ln \left(\frac{\mathrm{A}_{0} \cdot \mathrm{x}_{\mathrm{eq}}+\mathrm{x} \cdot\left(\mathrm{A}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{A}_{0} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
$9.1 \mathrm{E}^{\wedge}-5 \mathrm{~s}^{-1}=\left(\frac{1}{3600 \mathrm{~s}}\right) \cdot\left(\frac{70 \mathrm{~mol} / \mathrm{L}}{2 \cdot 100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L}}\right) \cdot \ln \left(\frac{100 \mathrm{~mol} / \mathrm{L} \cdot 70 \mathrm{~mol} / \mathrm{L}+27.5 \mathrm{~mol} / \mathrm{L} \cdot(100 \mathrm{~mol} / \mathrm{L}-}{100 \mathrm{~mol} / \mathrm{L} \cdot(70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~mol} / \mathrm{L})}\right.$
17) Reactant Concentration at given Time t
$f \mathrm{fx}=\mathrm{A}_{0} \cdot\left(\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}}\right) \cdot\left(\left(\frac{\mathrm{k}_{\mathrm{b}}}{\mathrm{k}_{\mathrm{f}}}\right)+\exp \left(-\left(\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}\right) \cdot \mathrm{t}\right)\right)$
Open Calculator ©
ex
$72.42095 \mathrm{~mol} / \mathrm{L}=100 \mathrm{~mol} / \mathrm{L} \cdot\left(\frac{0.0000974 \mathrm{~s}^{-1}}{0.0000974 \mathrm{~s}^{-1}+0.0000418 \mathrm{~s}^{-1}}\right) \cdot\left(\left(\frac{0.0000418 \mathrm{~s}^{-1}}{0.0000974 \mathrm{~s}^{-1}}\right)+\exp \left(-\left(0.0000974 \mathrm{~s}^{-1}+C\right.\right.\right.$
18) Time taken for 1st Order Opposed by 1st Order Reaction
$\mathrm{fx} t=\frac{\ln \left(\frac{\mathrm{x}_{\mathrm{eq}}}{\mathrm{x}_{\mathrm{eq}}-\mathrm{x}}\right)}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}}$
Open Calculator
ex $3584.707 \mathrm{~s}=\frac{\ln \left(\frac{70 \mathrm{~mol} / \mathrm{L}}{70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~mol} / \mathrm{L}}\right)}{0.0000974 \mathrm{~s}^{-1}+0.0000418 \mathrm{~s}^{-1}}$
19) Time taken for 1st Order Opposed by 1st Order Reaction given Initial Concentration of Reactant
$\mathrm{fx} \mathrm{t}=\left(\frac{1}{\mathrm{k}_{\mathrm{f}}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}}{\mathrm{A}_{0}}\right) \cdot \ln \left(\frac{\mathrm{x}_{\mathrm{eq}}}{\mathrm{x}_{\mathrm{eq}}-\mathrm{x}}\right)$
ex $3586.179 \mathrm{~s}=\left(\frac{1}{0.0000974 \mathrm{~s}^{-1}}\right) \cdot\left(\frac{70 \mathrm{~mol} / \mathrm{L}}{100 \mathrm{~mol} / \mathrm{L}}\right) \cdot \ln \left(\frac{70 \mathrm{~mol} / \mathrm{L}}{70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~mol} / \mathrm{L}}\right)$
20) Time taken for 2nd Order Opposed by 1st Order Reaction given Initial Conc of Reactant A
$\mathrm{fx} t=\left(\frac{1}{\mathrm{k}_{\mathrm{f}}{ }^{\prime}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}}{\left(\mathrm{A}_{0}^{2}\right)-\left(\mathrm{x}_{\mathrm{eq}}^{2}\right)}\right) \cdot \ln \left(\frac{\mathrm{x}_{\mathrm{eq}} \cdot\left(\mathrm{A}_{0}^{2}-\mathrm{x} \cdot \mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{A}_{0}^{2} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
ex
$0.633369 \mathrm{~s}=\left(\frac{1}{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}\right) \cdot\left(\frac{70 \mathrm{~mol} / \mathrm{L}}{\left((100 \mathrm{~mol} / \mathrm{L})^{2}\right)-\left((70 \mathrm{~mol} / \mathrm{L})^{2}\right)}\right) \cdot \ln \left(\frac{70 \mathrm{~mol} / \mathrm{L} \cdot\left((100 \mathrm{~mol} / \mathrm{L})^{2}-\right.}{(100 \mathrm{~mol} / \mathrm{L})^{2} \cdot(70 \mathrm{mo}}\right.$
21) Time taken for 2nd Order Opposed by 2nd Order Reaction given Initial Conc of Reactant B
$f \mathrm{f} \mathrm{t}_{2 \mathrm{nd}}=\left(\frac{1}{\mathrm{k}_{\mathrm{f}}^{\prime}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}^{2}}{2 \cdot \mathrm{~B}_{0} \cdot\left(\mathrm{~B}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}\right) \cdot \ln \left(\frac{\mathrm{x} \cdot\left(\mathrm{B}_{0}-2 \cdot \mathrm{x}_{\mathrm{eq}}\right)+\mathrm{B}_{0} \cdot \mathrm{x}_{\mathrm{eq}}}{\mathrm{B}_{0} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
$74302.86 \mathrm{~s}=\left(\frac{1}{0.00618 \mathrm{~L} /\left(\mathrm{mol}^{*} \mathrm{~s}\right)}\right) \cdot\left(\frac{(70 \mathrm{~mol} / \mathrm{L})^{2}}{2 \cdot 80 \mathrm{~mol} / \mathrm{L} \cdot(80 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L})}\right) \cdot \ln \left(\frac{27.5 \mathrm{~mol} / \mathrm{L} \cdot(80 \mathrm{~mol} / \mathrm{L}-}{80 \mathrm{~mol} / \mathrm{L} \cdot{ }^{7}}\right.$
22) Time Taken for Completion of Reaction
$\mathbf{f x} t=\left(\frac{1}{\mathrm{k}_{\mathrm{f}}}\right) \cdot\left(\frac{\mathrm{x}_{\mathrm{eq}}}{2 \cdot \mathrm{~A}_{0}-\mathrm{x}_{\mathrm{eq}}}\right) \cdot \ln \left(\frac{\mathrm{A}_{0} \cdot \mathrm{x}_{\mathrm{eq}}+\mathrm{x} \cdot\left(\mathrm{A}_{0}-\mathrm{x}_{\mathrm{eq}}\right)}{\mathrm{A}_{0} \cdot\left(\mathrm{x}_{\mathrm{eq}}-\mathrm{x}\right)}\right)$
ex
$3374.533 \mathrm{~s}=\left(\frac{1}{0.0000974 \mathrm{~s}^{-1}}\right) \cdot\left(\frac{70 \mathrm{~mol} / \mathrm{L}}{2 \cdot 100 \mathrm{~mol} / \mathrm{L}-70 \mathrm{~mol} / \mathrm{L}}\right) \cdot \ln \left(\frac{100 \mathrm{~mol} / \mathrm{L} \cdot 70 \mathrm{~mol} / \mathrm{L}+27.5 \mathrm{~mol} / \mathrm{L} \cdot(100 \mathrm{~m}}{100 \mathrm{~mol} / \mathrm{L} \cdot(70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~m}}\right.$
23) Time taken when Initial Concentration of Reactant B greater than 0
$f \mathrm{fx}=\frac{1}{\mathrm{k}_{\mathrm{f}}} \cdot \ln \left(\frac{\mathrm{x}_{\mathrm{eq}}}{\mathrm{x}_{\mathrm{eq}}-\mathrm{x}}\right) \cdot\left(\frac{\mathrm{B}_{0}+\mathrm{x}_{\mathrm{eq}}}{\mathrm{A}_{0}+\mathrm{B}_{0}}\right)$
ex $4269.26 \mathrm{~s}=\frac{1}{0.0000974 \mathrm{~s}^{-1}} \cdot \ln \left(\frac{70 \mathrm{~mol} / \mathrm{L}}{70 \mathrm{~mol} / \mathrm{L}-27.5 \mathrm{~mol} / \mathrm{L}}\right) \cdot\left(\frac{80 \mathrm{~mol} / \mathrm{L}+70 \mathrm{~mol} / \mathrm{L}}{100 \mathrm{~mol} / \mathrm{L}+80 \mathrm{~mol} / \mathrm{L}}\right)$

Variables Used

- $[A]_{\text {eq }}$ Concentration of Reactant A at Equilibrium (Mole per Liter)
- $[\mathrm{B}]_{\text {eq }}$ Concentration of Reactant B at Equilibrium (Mole per Liter)
- [C] $]_{\text {eq }}$ Concentration of Product C at Equilibrium (Mole per Liter)
- [D] $]_{\text {eq }}$ Concentration of Product D at Equilibrium (Mole per Liter)
- A Concentration of A at Time t (Mole per Liter)
- $\mathbf{A}_{\mathbf{0}}$ Initial Concentration of Reactant A (Mole per Liter)
- \mathbf{B}_{0} Initial Concentration of Reactant B (Mole per Liter)
- $\mathbf{k}_{\mathbf{b}}$ Backward Reaction Rate Constant (1 Per Second)
- $\mathbf{k}_{\mathbf{b}}{ }^{\prime}$ Backward Reaction Rate Constant for 2nd Order (Liter per Mole Second)
- $\mathbf{k}_{\text {bbr }}{ }^{\prime}$ Backward Reaction Rate Constant given kf and Keq (Liter per Mole Second)
- $\mathbf{k}_{\text {brc }}$ ' Rate Constant of Backward Reaction (Liter per Mole Second)
- $\mathbf{K}_{\text {eq }}$ Equilibrium Constant for Second Order Reaction
- K Keqm Equilibrium Constant
- $\mathbf{k}_{\mathbf{f}}$ Forward Reaction Rate Constant (1 Per Second)
- $\mathbf{k}_{\mathbf{f}}$ ' Forward Reaction Rate Constant for 2nd Order (Liter per Mole Second)
- \mathbf{k}_{fA} ' Forward Reaction Rate Constant given A (Liter per Mole Second)
- \mathbf{k}_{fB} ' Forward Reaction Rate Constant given B (Liter per Mole Second)
- \mathbf{k}_{fr} ' Forward Reaction Rate Constant given kf and Keq (Liter per Mole Second)
- $\mathbf{k} \mathbf{2}_{\mathbf{b}}{ }^{\prime}$ Rate Constant for Backward Reaction (Cubic Meter per Mole Second)
- t Time (Second)
- $\mathbf{t}_{2 n d}$ Time for 2nd Order (Second)
- \mathbf{x} Concentration of Product at Time t (Mole per Liter)
- $\mathbf{x}_{\text {eq }}$ Concentration of Reactant at Equilibrium (Mole per Liter)

Constants, Functions, Measurements used

- Function: $\exp , \exp ($ Number $)$
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: $\ln , \ln ($ Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Molar Concentration in Mole per Liter (mol/L)

Molar Concentration Unit Conversion

- Measurement: First Order Reaction Rate Constant in 1 Per Second $\left(\mathrm{s}^{-1}\right)$

First Order Reaction Rate Constant Unit Conversion

- Measurement: Second Order Reaction Rate Constant in Cubic Meter per Mole Second (m³/(mol*s)), Liter per Mole Second (L/(mol*s))
Second Order Reaction Rate Constant Unit Conversion

Check other formula lists

- Collision Theory and Chain Reactions Formulas
- Enzyme Kinetics Formulas
- First Order Reaction Formulas
- Important Formulas on Enzyme Kinetics
- Important Formulas on Reversible Reaction
- Second Order Reaction Formulas
- Zero Order Reaction Formulas

Feel free to SHARE this document with your friends!

PDF Available in
English Spanish French German Russian Italian Portuguese Polish Dutch

