

Power Converter Characteristics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Power Converter Characteristics Formulas

Power Converter Characteristics

1) Average DC Output Voltage of Single Phase Full Converter

$$V_{avg ext{-}dc(full)} = rac{2 \cdot V_{m ext{-}dc(full)} \cdot \cos(lpha_{full})}{\pi}$$

Open Calculator

$$\boxed{ 2 \cdot 140 \text{V} \cdot \cos(35^\circ) \over \pi}$$

2) Average Load Current of Three Phase Semi-Current

$$\boxed{\textbf{k}} I_{L(3\Phi\text{-semi})} = \frac{V_{avg(3\Phi\text{-semi})}}{R_{3\Phi\text{-semi}}}$$

Open Calculator

$$\mathbf{ex} \boxed{0.86931 \mathrm{A} = \frac{25.21 \mathrm{V}}{29\Omega}}$$

3) Average Output Voltage for Continuous Load Current

$$ag{K} egin{aligned} V_{
m avg(3\Phi-half)} = rac{3 \cdot \sqrt{3} \cdot V_{
m in(3\Phi-half)i} \cdot \left(\cos \left(lpha_{
m d(3\Phi-half)}
ight)
ight)}{2 \cdot \pi} \end{aligned}$$

Open Calculator 🗗

$$\boxed{ \mathbf{ex} \left[38.95558 \mathrm{V} = \frac{3 \cdot \sqrt{3} \cdot 182 \mathrm{V} \cdot (\cos(75°))}{2 \cdot \pi} \right] }$$

4) Average Output Voltage for PWM Control

$$\mathbf{E}_{ ext{dc}} = \left(rac{ ext{E}_{ ext{m}}}{\pi}
ight) \cdot \sum (x, 1, ext{p}, (\cos(lpha_{ ext{k}}) - \cos(eta_{ ext{k}})))$$

Open Calculator

$$\boxed{ \mathbf{ex} } \left[80.39156 \mathrm{V} = \left(\frac{230 \mathrm{V}}{\pi} \right) \cdot \sum (x, 1, 3, (\cos(30°) - \cos(60.0°))) \right]$$

5) Average Output Voltage for Three-Phase Converter

$$ag{V_{avg(3\Phi ext{-full})}} = rac{2 \cdot V_{m(3\Phi ext{-full})} \cdot \cos\left(rac{lpha_{d(3\Phi ext{-full})}}{2}
ight)}{\pi}$$

Open Calculator

$$extbf{ex} 115.2489 ext{V} = rac{2 \cdot 221 ext{V} \cdot \cos\left(rac{70^{\circ}}{2}
ight)}{\pi}$$

6) Average Output Voltage of Single Phase Semi-Converter with Highly Inductive Load 🛂

$$\boxed{\mathbf{K}} V_{avg(semi)} = \left(\frac{V_{m(semi)}}{\pi}\right) \cdot \left(1 + \cos\left(\alpha_{(semi)}\right)\right)$$

Open Calculator

7) Average Output Voltage of Single Phase Thyristor Converter with Resistive Load

$$V_{
m avg(thy)} = \left(rac{V_{
m in(thy)}}{2\cdot\pi}
ight)\cdot\left(1+\cos\left(lpha_{
m d(thy)}
ight)
ight)$$

Open Calculator 🖸

8) DC Output Voltage for First Converter

$$V_{
m out(first)} = rac{2 \cdot V_{
m in(dual)} \cdot \left(\cos \left(lpha_{
m 1(dual)}
ight)
ight)}{\pi}$$

Open Calculator

$$\boxed{73.78295 V = \frac{2 \cdot 125 V \cdot (\cos(22^\circ))}{\pi}}$$

9) DC Output Voltage of Second Converter

$$ag{V_{ ext{out(second)}}} = rac{2 \cdot V_{ ext{in(dual)}} \cdot \left(\cos \left(lpha_{2 ext{(dual)}}
ight)
ight)}{\pi}$$

Open Calculator 🗗

$$= \frac{2 \cdot 125 \text{V} \cdot (\cos(60°))}{\pi}$$

10) Fundamental Supply Current for PWM Control

$$\mathbf{f_k} egin{aligned} \mathbf{I}_{\mathrm{S(fund)}} &= \left(rac{\sqrt{2} \cdot \mathbf{I_a}}{\pi}
ight) \cdot \sum (x, 1, \mathrm{p}, (\cos(lpha_{\mathrm{k}})) - (\cos(eta_{\mathrm{k}}))) \end{aligned}$$

Open Calculator 🗗

$$\boxed{1.087478 \mathrm{A} = \left(\frac{\sqrt{2} \cdot 2.2 \mathrm{A}}{\pi}\right) \cdot \sum (x, 1, 3, (\cos(30^\circ)) - (\cos(60.0^\circ)))}$$

11) RMS Harmonic Current for PWM Control

 $\mathbf{r} = \left(rac{\sqrt{2} \cdot \mathbf{I_a}}{\pi}
ight) \cdot \sum (x, 1, \mathbf{p}, (\cos(\mathbf{n} \cdot \mathbf{a_k})) - (\cos(\mathbf{n} \cdot \mathbf{b_k})))$

Open Calculator

12) RMS Output Voltage for Continuous Load Current

 $\boxed{\mathbf{k}} V_{rms(3\Phi\text{-half})} = \sqrt{3} \cdot V_{in(3\Phi\text{-half})i} \cdot \left(\left(\frac{1}{6} \right) + \frac{\sqrt{3} \cdot \cos \left(2 \cdot \alpha_{d(3\Phi\text{-half})} \right)}{8 \cdot \pi} \right)$

Open Calculator

$$\boxed{\textbf{ex}} 103.1076 \text{V} = \sqrt{3} \cdot 182 \text{V} \cdot \left(\left(\frac{1}{6} \right) + \frac{\sqrt{3} \cdot \cos(2 \cdot 75°)}{8 \cdot \pi} \right)^{0.5}$$

13) RMS Output Voltage for Resistive Load

 $ext{V}_{ ext{rms}(3\Phi ext{-half})} = \sqrt{3} \cdot ext{V}_{ ext{m}(3\Phi ext{-half})} \cdot \left(\sqrt{\left(rac{1}{6}
ight) + \left(rac{\sqrt{3} \cdot \cos\left(2 \cdot lpha_{ ext{d}(3\Phi ext{-half})}
ight)}{8 \cdot \pi}
ight)}
ight)$

Open Calculator 6

14) RMS Output Voltage for Three Phase Semi-Converter

$$\overline{\mathrm{V}_{\mathrm{rms}(3\Phi ext{-semi})}} = \sqrt{3}\cdot \mathrm{V}_{\mathrm{in}(3\Phi ext{-semi})}\cdot \left(\left(rac{3}{4\cdot\pi}
ight)\cdot \left(\pi - lpha_{(3\Phi ext{-semi})} + \left(rac{\sin\left(2\cdotlpha_{(3\Phi ext{-semi})}
ight)}{2}
ight)
ight)^{0.5}
ight)$$

$$\boxed{14.0231 \mathrm{V} = \sqrt{3} \cdot 22.7 \mathrm{V} \cdot \left(\left(\frac{3}{4 \cdot \pi} \right) \cdot \left(\pi - 70.3^\circ + \left(\frac{\sin(2 \cdot 70.3^\circ)}{2} \right) \right)^{0.5} \right)}$$

fx

15) RMS Output Voltage of Single Phase Full Converter

$$\text{fx} V_{rms(full)} = \frac{V_{m(full)}}{\sqrt{2}}$$

Open Calculator

Open Calculator

Open Calculator

Open Calculator G

16) RMS Output Voltage of Single Phase Semi-Converter with Highly Inductive Load

$$V_{
m rms(semi)} = \left(rac{V_{
m m(semi)}}{2^{0.5}}
ight) \cdot \left(rac{180 - lpha_{
m (semi)}}{180} + \left(rac{0.5}{\pi}
ight) \cdot \sin(2 \cdot lpha_{
m (semi)})
ight)$$

$$\boxed{ 16.87107 \mathrm{V} = \left(\frac{22.8 \mathrm{V}}{2^{0.5}} \right) \cdot \left(\frac{180 - 70.1^\circ}{180} + \left(\frac{0.5}{\pi} \right) \cdot \sin(2 \cdot 70.1^\circ) \right)^{0.5} }$$

17) RMS Output Voltage of Single Phase Thyristor Converter with Resistive Load 🖸

$$\boxed{\mathbf{v}_{\mathrm{rms(thy)}} = \left(\frac{V_{\mathrm{in(thy)}}}{2}\right) \cdot \left(\frac{180 - \alpha_{\mathrm{d(thy)}}}{180} + \left(\frac{0.5}{\pi}\right) \cdot \sin(2 \cdot \alpha_{\mathrm{d(thy)}})\right)^{0.5}}$$

$$\boxed{ \text{ex} \left[6.27751 \text{V} = \left(\frac{12 \text{V}}{2} \right) \cdot \left(\frac{180 - 70.2^{\circ}}{180} + \left(\frac{0.5}{\pi} \right) \cdot \sin(2 \cdot 70.2^{\circ}) \right)^{0.5} }$$

18) RMS Output Voltage of Three-Phase Full Converter

$$egin{aligned} \mathbf{K} \ V_{\mathrm{rms}(3\Phi ext{-full})} &= \left(\left(6
ight)^{0.5}
ight) \cdot V_{\mathrm{in}(3\Phi ext{-full})} \cdot \left(\left(0.25 + 0.65 \cdot rac{\cos\left(2 \cdot lpha_{\mathrm{d}(3\Phi ext{-full})}
ight)}{\pi}
ight)^{0.5}
ight) \end{aligned}$$

$$\boxed{ 163.0118 \mathrm{V} = \left((6)^{0.5} \right) \cdot 220 \mathrm{V} \cdot \left(\left(0.25 + 0.65 \cdot \frac{\cos(2 \cdot 70^\circ)}{\pi} \right)^{0.5} \right) }$$

19) RMS Supply Current for PWM Control

$$\mathbf{R} = rac{\mathrm{I_a}}{\sqrt{\pi}} \cdot \sqrt{\sum(x,1,\mathrm{p},(eta_\mathrm{k}-lpha_\mathrm{k}))}$$

Open Calculator

$$= 1.555635 \mathrm{A} = \frac{2.2 \mathrm{A}}{\sqrt{\pi}} \cdot \sqrt{\sum (x, 1, 3, (60.0 \degree - 30 \degree))}$$

Variables Used

- Edc Average Output Voltage of PWM Controlled Converter (Volt)
- Em Peak Input Voltage of PWM Converter (Volt)
- Ia Armature Current (Ampere)
- I_{L(3Φ-semi)} Load Current 3 Phase Semi Converter (Ampere)
- In RMS nth Harmonic Current (Ampere)
- I_{rms} Root Mean Square Current (Ampere)
- Is(fund) Fundamental Supply Current (Ampere)
- n Harmonic Order
- p Number of Pulse in Half-cycle of PWM
- R_{3Φ-semi} Resistance 3 Phase Semi Converter (Ohm)
- V_{avg(3Φ-full)} Average Voltage 3 Phase Full Converter (Volt)
- Vavg(3Φ-half) Average Voltage 3 Phase Half Converter (Volt)
- V_{avg(3Φ-semi)} Average Voltage 3 Phase Semi Converter (Volt)
- Vavg(semi) Average Voltage Semi Converter (Volt)
- V_{avg(thy)} Average Voltage Thyristor Converter (Volt)
- Vavg-dc(full) Average Voltage Full Converter (Volt)
- V_{in(3Φ-full)} Peak Input Voltage 3 Phase Full Converter (Volt)
- V_{in(3Φ-half)i} Peak Input Voltage 3 Phase Half Converter (Volt)
- V_{in(3Φ-semi)} Peak Input Voltage 3 Phase Semi Converter (Volt)
- Vin(dual) Peak Input Voltage Dual Converter (Volt)
- V_{in(thv)} Peak Input Voltage Thyristor Converter (Volt)
- V_{m(3Φ-full)} Peak Phase Voltage Full Converter (Volt)
- V_{m(3Φ-half)} Peak Phase Voltage (Volt)
- V_{m(full)} Maximum Input Voltage Full Converter (Volt)
- V_{m(semi)} Maximum Input Voltage Semi Converter (Volt)
- V_{m-dc(full)} Maximum DC Output Voltage Full Converter (Volt)
- V_{out(first)} DC Output Voltage First Converter (Volt)
- V_{out(second)} DC Output Voltage Second Converter (Volt)
- V_{rms(3Φ-full)} RMS Output Voltage 3 Phase Full Converter (Volt)
- V_{rms(3Φ-half)} RMS Output Voltage 3 Phase Half Converter (Volt)
- V_{rms(3Φ-semi)} RMS Output Voltage 3 Phase Semi Converter (Volt)
- V_{rms(full)} RMS Output Voltage Full Converter (Volt)

- V_{rms(semi)} RMS Output Voltage Semi Converter (Volt)
- V_{rms(thv)} RMS Voltage Thyristor Converter (Volt)
- α_(3Φ-semi) Delay Angle of 3 Phase Semi Converter (Degree)
- α_(semi) Delay Angle Semi Converter (Degree)
- α_{1(dual)} Delay Angle of First Converter (Degree)
- α_{2(dual)} Delay Angle of Second Converter (Degree)
- α_{d(3Φ-full)} Delay Angle of 3 Phase Full Converter (Degree)
- α_{d(3Φ-half)} Delay Angle of 3 Phase Half Converter (Degree)
- α_{d(thv)} Delay Angle of Thyristor Converter (Degree)
- α_{full} Firing Angle Full Converter (Degree)
- α_k Excitation Angle (Degree)
- β_k Symmetrical Angle (Degree)

Constants, Functions, Measurements used

Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant

• Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

• Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

• Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

• Function: sum, sum(i, from, to, expr)

Summation or sigma (Σ) notation is a method used to write out a long sum in a concise way.

• Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

• Measurement: Angle in Degree (°)

Angle Unit Conversion

Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion

• Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

Check other formula lists

Power Converter Characteristics Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/1/2024 | 3:28:01 PM UTC

Please leave your feedback here...

