



# Important formulae on Equipartition Principle and Heat Capacity Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





## List of 20 Important formulae on Equipartition Principle and Heat Capacity Formulas

## Important formulae on Equipartition Principle and Heat Capacity 🗗

1) Atomicity given Molar Heat Capacity at Constant Pressure and Volume of Linear Molecule

$$ext{N} = rac{\left(2.5 \cdot \left(rac{C_p}{C_v}
ight)
ight) - 1.5}{\left(3 \cdot \left(rac{C_p}{C_v}
ight)
ight) - 3}$$

Open Calculator 🚰

$$\boxed{ \textbf{ex} } \ 2.640351 = \frac{ \left( 2.5 \cdot \left( \frac{122 \mathrm{J/K^*mol}}{103 \mathrm{J/K^*mol}} \right) \right) - 1.5}{ \left( 3 \cdot \left( \frac{122 \mathrm{J/K^*mol}}{103 \mathrm{J/K^*mol}} \right) \right) - 3}$$

2) Atomicity given Molar Vibrational Energy of Non-Linear Molecule

$$N = rac{\left(rac{E_{
m v}}{[{
m R}]\cdot {
m T}}
ight) + 6}{3}$$

Open Calculator 🗗

$$2.259411 = \frac{\left(\frac{550J/\text{mol}}{[\text{R}] \cdot 85K}\right) + 6}{3}$$

3) Atomicity given Ratio of Molar Heat Capacity of Linear Molecule

$$ext{N} = rac{(2.5 \cdot \gamma) - 1.5}{(3 \cdot \gamma) - 3}$$

Open Calculator

$$= 1.5 = \frac{(2.5 \cdot 1.5) - 1.5}{(3 \cdot 1.5) - 3}$$

4) Atomicity given Vibrational Degree of Freedom in Non-Linear Molecule

$$N = \frac{F+6}{3}$$

Open Calculator 🗗

$$2.666667 = \frac{2+6}{3}$$

5) Average Thermal Energy of Linear Polyatomic Gas Molecule given Atomicity

$$\mathbf{R} \left[ \mathrm{Q}_{\mathrm{atomicity}} = ((6 \cdot \mathrm{N}) - 5) \cdot (0.5 \cdot [\mathrm{BoltZ}] \cdot \mathrm{T}) \right]$$

Open Calculator

ex 
$$7.6E^-21J = ((6 \cdot 3) - 5) \cdot (0.5 \cdot [BoltZ] \cdot 85K)$$



© calculatoratoz.com. A softusvista inc. venture!



## 6) Average Thermal Energy of Non-linear polyatomic Gas Molecule given Atomicity 🗗

 $\mathbf{R} \, \mathrm{Q}_{\mathrm{atomicity}} = ((6 \cdot \mathrm{N}) - 6) \cdot (0.5 \cdot \mathrm{[BoltZ]} \cdot \mathrm{T})$ 

Open Calculator

 $(6 \cdot 3) - 6 \cdot (0.5 \cdot [BoltZ] \cdot 85K)$ 

## 7) Degree of Freedom given Ratio of Molar Heat Capacity 🗗

$$\mathbf{F} = rac{2}{\gamma - 1}$$

Open Calculator

Open Calculator 6

$$\boxed{4 = \frac{2}{1.5-1}}$$

## 8) Internal Molar Energy of Linear Molecule

$$\overline{\mathrm{U}_{\mathrm{molar}}} = \left( \left( rac{3}{2} 
ight) \cdot [\mathrm{R}] \cdot \mathrm{T} 
ight) + \left( \left( 0.5 \cdot \mathrm{I_y} \cdot \left( \omega_{\mathrm{y}}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_{\mathrm{z}}^2 
ight) 
ight) 
ight) + \left( (3 \cdot \mathrm{N}) - 5 
ight) \cdot ([\mathrm{R}] \cdot \mathrm{N}) + \left( (3 \cdot \mathrm{N}) - 5 \cdot (\mathrm{R}) \cdot \mathrm{N} \cdot \mathrm{N} \right) + \left( (3 \cdot \mathrm{N}) - 5 \cdot (\mathrm{R}) \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{N} \right) + \left( (3 \cdot \mathrm{N}) - 5 \cdot (\mathrm{R}) \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{N} \right) + \left( (3 \cdot \mathrm{N}) - 5 \cdot (\mathrm{R}) \cdot \mathrm{N} \cdot \mathrm{N}$$

ex

$$\boxed{3914.046 J = \left(\left(\frac{3}{2}\right) \cdot \left[R\right] \cdot 85 K\right) + \left(\left(0.5 \cdot 60 \text{kg} \cdot \text{m}^2 \cdot \left(\left(35 \text{degree/s}\right)^2\right)\right) + \left(0.5 \cdot 65 \text{kg} \cdot \text{m}^2 \cdot \left(\left(40 \text{degree/s}\right)^2\right)\right)}$$

### 9) Internal Molar Energy of Linear Molecule given Atomicity 🗗

 $\mathbf{E}[\mathbf{U}_{\mathrm{molar}} = ((6 \cdot \mathbf{N}) - 5) \cdot (0.5 \cdot [\mathbf{R}] \cdot \mathbf{T})$ 

Open Calculator 2

Open Calculator

 $4593.741J = ((6 \cdot 3) - 5) \cdot (0.5 \cdot [R] \cdot 85K)$ 

## 10) Internal Molar Energy of Non-Linear Molecule

$$\mathrm{U_{molar}} = \left( \left( rac{3}{2} 
ight) \cdot \mathrm{[R]} \cdot \mathrm{T} 
ight) + \left( \left( 0.5 \cdot \mathrm{I_y} \cdot \left( \omega_\mathrm{y}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{z}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_x} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_y} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight) 
ight) + \left( 0.5 \cdot \mathrm{I_z} \cdot \left( \omega_\mathrm{x}^2 
ight)$$

$$3214.856 \text{J} = \left( \left( \frac{3}{2} \right) \cdot [\text{R}] \cdot 85 \text{K} \right) + \left( \left( 0.5 \cdot 60 \text{kg} \cdot \text{m}^2 \cdot \left( \left( 35 \text{degree/s} \right)^2 \right) \right) + \left( 0.5 \cdot 65 \text{kg} \cdot \text{m}^2 \cdot \left( \left( 40 \text{degree/s} \right)^2 \right) \right)$$

## 11) Internal Molar Energy of Non-Linear Molecule given Atomicity 🗗

 $\mathbf{L} U_{\mathrm{molar}} = ((6 \cdot \mathrm{N}) - 6) \cdot (0.5 \cdot [\mathrm{R}] \cdot \mathrm{T})$ 

Open Calculator 6

 $[4240.376J = ((6 \cdot 3) - 6) \cdot (0.5 \cdot [R] \cdot 85K)]$ 







## 12) Molar Heat Capacity at Constant Pressure given Compressibility

$$\mathrm{C_p} = \left(rac{\mathrm{K_T}}{\mathrm{K_S}}
ight) \cdot \mathrm{C_v}$$

Open Calculator 🖸

$$extbf{ex} 110.3571 ext{J/K*mol} = \left(rac{75 ext{m}^2/ ext{N}}{70 ext{m}^2/ ext{N}}
ight) \cdot 103 ext{J/K*mol}$$

## 13) Molar Vibrational Energy of Linear Molecule

$$\mathbf{E}_{\mathrm{viv}} = ((3 \cdot \mathrm{N}) - 5) \cdot ([\mathrm{R}] \cdot \mathrm{T})$$

Open Calculator

ex 
$$2826.917 \text{J/mol} = ((3 \cdot 3) - 5) \cdot ([\text{R}] \cdot 85 \text{K})$$

## 14) Molar Vibrational Energy of Non-Linear Molecule

$$\mathbf{E}_{\mathrm{viv}} = ((3 \cdot \mathrm{N}) - 6) \cdot ([\mathrm{R}] \cdot \mathrm{T})$$

Open Calculator

ex 
$$2120.188 \mathrm{J/mol} = ((3 \cdot 3) - 6) \cdot ([\mathrm{R}] \cdot 85 \mathrm{K})$$
  
15) Number of Modes in Non-Linear Molecule

## fx $N_{ m modes} = (6 \cdot N) - 6$

Open Calculator

## $\mathbf{ex} \Big[ 12 = (6 \cdot 3) - 6$

## 16) Ratio of Molar Heat Capacity given Degree of Freedom 🗗

fx 
$$\gamma=1+\left(rac{2}{\mathrm{F}}
ight)$$
 ex  $2=1+\left(rac{2}{2}
ight)$ 

Open Calculator

## 17) Ratio of Molar Heat Capacity of Linear Molecule

$$\gamma = rac{(((3\cdot\mathrm{N})-2.5)\cdot[\mathrm{R}])+[\mathrm{R}]}{((3\cdot\mathrm{N})-2.5)\cdot[\mathrm{R}]}$$

Open Calculator

## 18) Total Kinetic Energy

fx 
$$\overline{E_{total} = E_{T} + E_{rot} + E_{vf}}$$

Open Calculator







Open Calculator 🚰

19) Translational Energy

 $\mathbf{E}_{\mathrm{T}} = \left(rac{p_{\mathrm{x}}^{2}}{2\cdot\mathrm{Mass}_{\mathrm{flight\ path}}}
ight) + \left(rac{p_{\mathrm{y}}^{2}}{2\cdot\mathrm{Mass}_{\mathrm{flight\ path}}}
ight) + \left(rac{p_{\mathrm{z}}^{2}}{2\cdot\mathrm{Mass}_{\mathrm{flight\ path}}}
ight)$ 

$$\boxed{ \mathbf{ex} } 512.6939 \mathbf{J} = \left( \frac{ \left( 105 \mathrm{kg^*m/s} \right)^2}{2 \cdot 35.45 \mathrm{kg}} \right) + \left( \frac{ \left( 110 \mathrm{kg^*m/s} \right)^2}{2 \cdot 35.45 \mathrm{kg}} \right) + \left( \frac{ \left( 115 \mathrm{kg^*m/s} \right)^2}{2 \cdot 35.45 \mathrm{kg}} \right) \right)$$

## 20) Vibrational Mode of Linear Molecule

fx 
$$N_{
m vib} = (3 \cdot N) - 5$$



#### Variables Used

- $\mathbf{C_p}$  Molar Specific Heat Capacity at Constant Pressure (Joule Per Kelvin Per Mole)
- C<sub>v</sub> Molar Specific Heat Capacity at Constant Volume (Joule Per Kelvin Per Mole)
- E<sub>rot</sub> Rotational Energy (Joule)
- E<sub>T</sub> Translational Energy (Joule)
- Etotal Total Energy (Joule)
- E<sub>v</sub> Molar Vibrational Energy (Joule Per Mole)
- E<sub>vf</sub> Vibrational Energy (Joule)
- Eviv Vibrational Molar Energy (Joule Per Mole)
- F Degree of Freedom
- I<sub>x</sub> Moment of Inertia along X-axis (Kilogram Square Meter)
- I<sub>V</sub> Moment of Inertia along Y-axis (Kilogram Square Meter)
- Iz Moment of Inertia along Z-axis (Kilogram Square Meter)
- Ks Isentropic Compressibility (Square Meter per Newton)
- K<sub>T</sub> Isothermal Compressibility (Square Meter per Newton)
- Mass<sub>flight path</sub> Mass (Kilogram)
- N Atomicity
- N<sub>modes</sub> Number of Normal modes for Non Linear
- N<sub>vib</sub> Number of Normal modes
- p<sub>x</sub> Momentum along X-axis (Kilogram Meter per Second)
- p<sub>V</sub> Momentum along Y-axis (Kilogram Meter per Second)
- p<sub>z</sub> Momentum along Z-axis (Kilogram Meter per Second)
- Qatomicity Thermal Energy given Atomicity (Joule)
- **T** Temperature (Kelvin)
- U<sub>molar</sub> Molar Internal Energy (Joule)
- V Ratio of Molar Heat Capacity
- ω<sub>x</sub> Angular Velocity along X-axis (Degree per Second)
- ω<sub>v</sub> Angular Velocity along Y-axis (Degree per Second)
- ω<sub>z</sub> Angular Velocity along Z-axis (Degree per Second)





### Constants, Functions, Measurements used

- Constant: [BoltZ], 1.38064852E-23 Joule/Kelvin
   Boltzmann constant
- Constant: [R], 8.31446261815324 Joule / Kelvin \* Mole Universal gas constant
- Measurement: Weight in Kilogram (kg)
  Weight Unit Conversion
- Measurement: Temperature in Kelvin (K)

  Temperature Unit Conversion
- Measurement: Energy in Joule (J)

  Energy Unit Conversion
- Measurement: Angular Velocity in Degree per Second (degree/s)
   Angular Velocity Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²)
   Moment of Inertia Unit Conversion
- Measurement: Momentum in Kilogram Meter per Second (kg\*m/s)
   Momentum Unit Conversion
- Measurement: Energy Per Mole in Joule Per Mole (J/mol) Energy Per Mole Unit Conversion
- Measurement: Compressibility in Square Meter per Newton (m²/N)
   Compressibility Unit Conversion
- Measurement: Molar Specific Heat Capacity at Constant Pressure in Joule Per Kelvin Per Mole (J/K\*mol)
   Molar Specific Heat Capacity at Constant Pressure Unit Conversion
- Measurement: Molar Specific Heat Capacity at Constant Volume in Joule Per Kelvin Per Mole (J/K\*mol) Molar Specific Heat Capacity at Constant Volume Unit Conversion





#### Check other formula lists

- Acentric Factor Formulas
- Average Velocity of Gas Formulas
- Average velocity of gas and Acentric factor Formulas
- Compressibility Formulas
- Density of Gas Formulas
- Equipartition Principle and Heat Capacity Formulas
- Important formulae on Equipartition Principle and Heat Capacity Formulas
- Inversion Temperature Formulas

- Kinetic Energy of Gas Formulas
- Mean Square Speed of Gas Formulas
- Molar Mass of Gas Formulas
- Most Probable Velocity of Gas Formulas
- PIB Formulas
- Pressure of Gas Formulas
- RMS Velocity Formulas
- Temperature of Gas Formulas
- Van der Waals Constant Formulas
- Volume of Gas Formulas

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/21/2023 | 12:59:01 AM UTC

Please leave your feedback here...



