

Important formulae on 2D Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

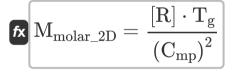
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Important formulae on 2D Formulas

Important formulae on 2D 🗗


1) Mean Square Speed of Gas Molecule given Pressure and Volume of Gas in 2D

$$ag{C}_{
m RMS_2D} = rac{2 \cdot P_{
m gas} \cdot V}{N_{
m molecules} \cdot m}$$

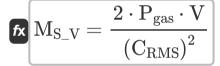
Open Calculator

$$0.9632 ext{m/s} = rac{2 \cdot 0.215 ext{Pa} \cdot 22.4 ext{L}}{100 \cdot 0.1 ext{g}}$$

2) Molar Mass given Most Probable Speed and Temperature in 2D 🗲

Open Calculator

$$ext{ex} \ 623.5847 ext{g/mol} = rac{[ext{R}] \cdot 30 ext{K}}{\left(20 ext{m/s}
ight)^2}$$


3) Molar Mass of Gas given Average Velocity, Pressure, and Volume in 2D

Open Calculator 2

$$ext{M}_{ ext{m_2D}} = rac{\pi \cdot ext{P}_{ ext{gas}} \cdot ext{V}}{2 \cdot \left(\left(ext{C}_{ ext{av}}
ight)^2
ight)}$$

$$\mathbf{ex} \left[0.302598 \mathrm{g/mol} = \frac{\pi \cdot 0.215 \mathrm{Pa} \cdot 22.4 \mathrm{L}}{2 \cdot \left(\left(5 \mathrm{m/s} \right)^2 \right)} \right]$$

4) Molar Mass of Gas given Root Mean Square Speed and Pressure in 2D

Open Calculator 2

$$oxed{ex} 0.09632 ext{g/mol} = rac{2 \cdot 0.215 ext{Pa} \cdot 22.4 ext{L}}{(10 ext{m/s})^2}$$

5) Most Probable Velocity of Gas given Pressure and Density in 2D

Open Calculator G

ex
$$12.96028 \mathrm{m/s} = \sqrt{rac{0.215 \mathrm{Pa}}{0.00128 \mathrm{kg/m^3}}}$$

6) Most Probable Velocity of Gas given Pressure and Volume in 2D

fx $C_{P_-V} = \sqrt{rac{P_{
m gas} \cdot V}{M_{
m molar}}}$

Open Calculator 🚰

 $oxed{ex} 0.330802 \mathrm{m/s} = \sqrt{rac{0.215 \mathrm{Pa} \cdot 22.4 \mathrm{L}}{44.01 \mathrm{g/mol}}}$

7) Most Probable Velocity of Gas given RMS Velocity in 2D

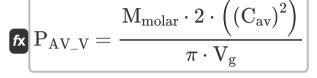
fx $\mathrm{C_{mp_RMS}} = (0.7071 \cdot \mathrm{C_{RMS}})$

Open Calculator

- $\texttt{ex} \ 7.071 \text{m/s} = (0.7071 \cdot 10 \text{m/s})$
- 8) Most Probable Velocity of Gas given Temperature in 2D

Open Calculator 🗗

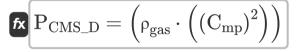
ex
$$75.28389 \text{m/s} = \sqrt{\frac{[\text{R}] \cdot 30 \text{K}}{44.01 \text{g/mol}}}$$


9) Pressure of Gas given Average Velocity and Density in 2D

 $ag{P_{
m AV_D}} = rac{
ho_{
m gas} \cdot 2 \cdot \left(({
m C}_{
m av})^2
ight)}{\pi}$

Open Calculator 🗗

 $oxed{ex} 0.020372 ext{Pa} = rac{0.00128 ext{kg/m}^3 \cdot 2 \cdot \left(\left(5 ext{m/s}
ight)^2
ight)}{\pi}$


10) Pressure of Gas given Average Velocity and Volume in 2D

Open Calculator 🚰

 $= \frac{31.20004 \text{Pa} = \frac{44.01 \text{g/mol} \cdot 2 \cdot \left((5 \text{m/s})^2 \right)}{\pi \cdot 22.45 \text{L}} }$

11) Pressure of Gas given most probable Speed and Density in 2D

 $oxed{ex} \left[0.512 \mathrm{Pa} = \left(0.00128 \mathrm{kg/m^3} \cdot \left((20 \mathrm{m/s})^2
ight)
ight)$

12) Pressure of Gas given Most Probable Speed and Volume in 2D 🗗

 $extstyle{ P_{ ext{CMS_V_2D}} = rac{ ext{M}_{ ext{molar}} \cdot \left(ext{C}_{ ext{mp}}
ight)^2}{ ext{V}_{ ext{g}}}}$

Open Calculator

$$784.1425 ext{Pa} = rac{44.01 ext{g/mol} \cdot (20 ext{m/s})^2}{22.45 ext{L}}$$

Variables Used

- C_{av} Average Velocity of Gas (Meter per Second)
- C_{mp} Most Probable Velocity (Meter per Second)
- C_{mp} RMS Most Probable Velocity given RMS (Meter per Second)
- C_{P D} Most Probable Velocity given P and D (Meter per Second)
- C_P V Most Probable Velocity given P and V (Meter per Second)
- C_{RMS} Root Mean Square Speed (Meter per Second)
- C_{RMS 2D} Root Mean Square Speed 2D (Meter per Second)
- C_T Most Probable Velocity given T (Meter per Second)
- m Mass of Each Molecule (Gram)
- M_{m 2D} Molar Mass 2D (Gram Per Mole)
- M_{molar} Molar Mass (Gram Per Mole)
- M_{molar 2D} Molar Mass in 2D (Gram Per Mole)
- M_{S V} Molar Mass given S and V (Gram Per Mole)
- N_{molecules} Number of Molecules
- P_{AV D} Pressure of Gas given AV and D (Pascal)
- P_{AV V} Pressure of Gas given AV and V (Pascal)
- P_{CMS D} Pressure of Gas given CMS and D (Pascal)
- P_{CMS} v _{2D} Pressure of Gas given CMS and V in 2D (Pascal)
- Pgas Pressure of Gas (Pascal)
- T_g Temperature of Gas (Kelvin)
- **V** Volume of Gas (*Liter*)

- ullet V_g Volume of Gas for 1D and 2D (Liter)
- ρ_{gas} Density of Gas (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [R], 8.31446261815324 Joule / Kelvin * Mole Universal gas constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Weight in Gram (g)
 Weight Unit Conversion
- Measurement: **Temperature** in Kelvin (K) *Temperature Unit Conversion*
- Measurement: Volume in Liter (L)
 Volume Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Molar Mass in Gram Per Mole (g/mol)
 Molar Mass Unit Conversion

Check other formula lists

- Acentric Factor Formulas
- Average Velocity of Gas
- Average velocity of gas and Acentric factor Formulas
- Compressibility Formulas
- Density of Gas Formulas
- Equipartition Principle and Heat Capacity Formulas
- Important formulae on 1D Formulas
- Important formulae on 2D Formulas
- Important formulae on Equipartition Principle and Heat Capacity Formulas

- Inversion Temperature
 Formulas
- Kinetic Energy of Gas
- Mean Square Speed of Gas Formulas
- Molar Mass of Gas Formulas
- Most Probable Velocity of Gas Formulas
- PIB Formulas
- Pressure of Gas Formulas
- RMS Velocity Formulas
- Temperature of Gas Formulas
- Van der Waals Constant Formulas
- Volume of Gas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/24/2023 | 10:41:36 AM UTC

Please leave your feedback here...

