

Important Formulas of Current Efficiency and Resistance

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Important Formulas of Current Efficiency and Resistance

Important Formulas of Current Efficiency and Resistance

1) Cell Constant given Resistance and Resistivity

$$b = \left(rac{R}{
ho}
ight)$$

Open Calculator 🗗

$$extbf{ex} 5.941176/ ext{m} = \left(rac{0.000101\Omega}{0.000017\Omega^* ext{m}}
ight)$$

2) Current Efficiency

$$ext{C.E} = \left(rac{ ext{A}_{ ext{o}}}{ ext{m}_{ ext{t}}}
ight) \cdot 100$$

Open Calculator 🗗

3) Distance between Electrode given Resistance and Resistivity

$$l = \frac{R \cdot A}{
ho}$$

Open Calculator

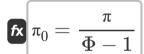
$$ext{ex} 59.41176 ext{m} = rac{0.000101 \Omega \cdot 10 ext{m}^2}{0.000017 \Omega^* ext{m}}$$

4) Electrode Cross-Section Area given Resistance and Resistivity

$$A = \frac{\rho \cdot l}{D}$$

Open Calculator 🗗

$$\mathbf{ex} = \frac{0.000017 \Omega^* \mathrm{m} \cdot 59.4 \mathrm{m}}{0.000101 \Omega}$$


5) Excess Pressure given Osmotic Coefficient

fx
$$\pi = (\Phi - 1) \cdot \pi_0$$

Open Calculator 🖸

$$200 \mathrm{at} = (5-1) \cdot 50 \mathrm{at}$$

6) Ideal Pressure given Osmotic Coefficient

Open Calculator

7) Kohlrausch Law

fx
$$\Lambda_{
m m}=\Lambda 0{
m m}-\left({
m K}\cdot\sqrt{
m c}
ight)$$

Open Calculator 🗗

$$ext{ex} \left[46.10263 ext{S*m}^2/ ext{mol} = 48 ext{S*m}^2/ ext{mol} - \left(60 \cdot \sqrt{0.001}
ight)
ight]$$

8) Mass of Metal to be Deposited 🔽

Open Calculator 2

 $M_{
m metal} = rac{
m MW \cdot i_p \cdot t}{
m nf \cdot [Faraday]}$

9) Resistance given Cell Constant

Open Calculator

 $0.0001\Omega = (0.000017\Omega * m \cdot 5.9/m)$

10) Resistance given Conductance

 $R = \frac{1}{G}$

fx $R = (\rho \cdot b)$

Open Calculator 2

11) Resistance given Distance between Electrode and Area of Cross-Section of Electrode

$$\mathbb{R} = (\rho) \cdot \left(\frac{1}{A}\right)$$

Open Calculator

$$oxed{ex} 0.000101\Omega = (0.000017\Omega^* ext{m}) \cdot \left(rac{59.4 ext{m}}{10 ext{m}^2}
ight)}$$

12) Resistivity

$$ho = R \cdot rac{A}{1}$$

Open Calculator 2

 $oxed{ex} 1.7 ext{E^--} 5 \Omega^* ext{m} = 0.000101 \Omega \cdot rac{10 ext{m}^2}{59.4 ext{m}}$

13) Resistivity given Specific Conductance

Open Calculator 2

ex $1.7 {
m E^-} - 5 \Omega^* {
m m} = rac{1}{60000 {
m S/m}}$

14) Solubility

 $ag{S} = ext{k}_{ ext{conductance}} \cdot rac{1000}{\Lambda 0 ext{m}}$

Open Calculator G

15) Solubility Product

fx $m K_{sp}=m^2$

Open Calculator 2

 $ex 1.4 \text{E} \hat{\ } 8 = (12 \text{mol/L})^2$

Variables Used

- A Electrode Cross-sectional Area (Square Meter)
- A_O Actual Mass Deposited (Gram)
- **b** Cell Constant (1 per Meter)
- C Concentration of Electrolyte
- C.E Current Efficiency
- G Conductance (Mho)
- i_p Electric Current (Ampere)
- K Kohlrausch Coefficient
- **k**conductance Specific Conductance (Siemens per Meter)
- K_{sp} Solubility Product
- I Distance between Electrodes (Meter)
- **m** Molar Solubility (Mole per Liter)
- M_{metal} Mass to be Deposited (Gram)
- m_t Theoretical Mass Deposited (Gram)
- MW Molecular Weight (Gram)
- nf N Factor
- R Resistance (Ohm)
- S Solubility (Mole per Liter)
- t Time (Hour)
- Λ_m Molar Conductivity (Siemens Square Meter per Mole)
- \(\Lambda\)0m Limiting Molar Conductivity (Siemens Square Meter per Mole)
- π Excess Osmotic Pressure (Atmosphere Technical)
- **π**₀ Ideal Pressure (Atmosphere Technical)

- **p** Resistivity (Ohm Meter)
- Osmotic Coefficient

Constants, Functions, Measurements used

- Constant: [Faraday], 96485.33212 Coulomb / Mole Faraday constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Gram (g)
 Weight Unit Conversion
- Measurement: Time in Hour (h)

 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)
 Electric Current Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Atmosphere Technical (at)
 Pressure Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Conductance in Mho (℧)

 Electric Conductance Unit Conversion

 □
- Measurement: Electric Resistivity in Ohm Meter (Ω*m)
 Electric Resistivity Unit Conversion
- Measurement: Electric Conductivity in Siemens per Meter (S/m)

 Electric Conductivity Unit Conversion
- Measurement: Molar Concentration in Mole per Liter (mol/L)
 Molar Concentration Unit Conversion

- Measurement: Wave Number in 1 per Meter (1/m)

 Wave Number Unit Conversion
- Measurement: Molar Conductivity in Siemens Square Meter per Mole (S*m²/mol)

Molar Conductivity Unit Conversion

Check other formula lists

- Activity of Electrolytes
 Formulas
- Concentration of Electrolyte Formulas
- Conductance and Conductivity
 Formulas
- Debey Huckel Limiting Law Formulas
- Degree of Dissociation
 Formulas
- Dissociation Constant
 Formulas
- Electrochemical Cell Formulas
- Electrolytes & Ions Formulas
- EMF of Concentration Cell Formulas
- Equivalent Weight Formulas
- Gibbs Free Energy Formulas
- Gibbs Free Entropy Formulas
- Helmholtz Free Energy Formulas
- Helmholtz Free Entropy Formulas
- Important Formulas of Activity and Concentration of

- Electrolytes 🛂
- Important Formulas of Conductance
- Important Formulas of Current Efficiency and Resistance
- Important Formulas of Gibbs Free Energy and Entropy and Helmholtz Free Energy and Entropy
- Important Formulas of Ionic Activity
- Ionic Strength Formulas
- Mean Activity Coefficient Formulas
- Mean Ionic Activity Formulas
- Normality of Solution
 Formulas
- Osmotic Coefficient & Current Efficiency Formulas
- Resistance and Resistivity Formulas
- Tafel Slope Formulas
- Temperature of Concentration
 Cell Formulas
- Transport Number Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/3/2023 | 2:16:55 AM UTC

Please leave your feedback here...

