

Important Calculator of Compressibility Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Important Calculator of Compressibility Formulas

Important Calculator of Compressibility

1) Compressibility Factor given Molar Volume of Gases

$$\mathbf{z}_{\mathrm{ktog}} = rac{V_{\mathrm{m}}}{V_{\mathrm{m \, (ideal)}}}$$

Open Calculator

$$= 1.964286 = \frac{22L}{11.2L}$$

2) Molar Volume of Real Gas given Compressibility Factor

fx
$$V_{
m molar} = z \cdot V_{
m m \, (ideal)}$$

Open Calculator 🛂

$$\texttt{ex} \ 126.7812 L = 11.31975 \cdot 11.2 L$$

3) Relative Size of Fluctuations in Particle Density

$$\Delta \mathrm{Nr}^2 = \mathrm{K_T} \cdot [\mathrm{BoltZ}] \cdot \mathrm{T} \cdot \left(
ho^2
ight) \cdot \mathrm{V}$$

Open Calculator 🚰

4) Speed of Sound using Isentropic Compressibility

 $v_{
m sound} = \sqrt{rac{1}{K_S \cdot
ho_{
m sound}}}$

Open Calculator 🗗

ex
$$388.7635 \mathrm{m/h} = \sqrt{\frac{1}{70 \mathrm{m^2/N} \cdot 1.225 \mathrm{kg/m^3}}}$$

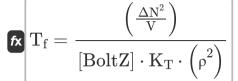
5) Temperature given Coefficient of Thermal Expansion, Compressibility Factors and Cp

 $ext{T}_{ ext{TE}} = rac{(ext{K}_{ ext{T}} - ext{K}_{ ext{S}}) \cdot
ho \cdot ext{C}_{ ext{p}}}{lpha^2}$

Open Calculator

$$\boxed{ 973.072 \mathrm{K} = \frac{ (75 \mathrm{m}^2 / \mathrm{N} - 70 \mathrm{m}^2 / \mathrm{N}) \cdot 997 \mathrm{kg} / \mathrm{m}^3 \cdot 122 \mathrm{J} / \mathrm{K}^* \mathrm{mol} }{ (25 \mathrm{K}^{\text{--}1})^2 } }$$

6) Temperature given Coefficient of Thermal Expansion, Compressibility Factors and Cv


 $ext{T}_{ ext{TE}} = rac{(ext{K}_{ ext{T}} - ext{K}_{ ext{S}}) \cdot
ho \cdot (ext{C}_{ ext{v}} + [ext{R}])}{lpha^2}$

Open Calculator 🚰

$$\boxed{ 887.8442 \text{K} = \frac{\left(75 \text{m}^2/\text{N} - 70 \text{m}^2/\text{N}\right) \cdot 997 \text{kg/m}^3 \cdot \left(103 \text{J/K*mol} + [\text{R}]\right)}{\left(25 \text{K}^{-1}\right)^2} }$$

7) Temperature given Relative Size of Fluctuations in Particle Density

Open Calculator 🗗

8) Temperature given Thermal Pressure Coefficient, Compressibility Factors and Cp

$$ag{T_{Cp}} = rac{\left(\left(rac{1}{K_S}
ight) - \left(rac{1}{K_T}
ight)
ight) \cdot
ho \cdot \left(C_p - [R]
ight)}{\Lambda^2}$$

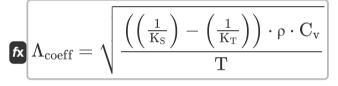
Open Calculator

- $\boxed{1.1 \text{E}^6 \text{K} = \frac{\left(\left(\frac{1}{70 \text{m}^2/\text{N}}\right) \left(\frac{1}{75 \text{m}^2/\text{N}}\right)\right) \cdot 997 \text{kg/m}^3 \cdot \left(122 \text{J/K*mol} [\text{R}]\right)}{\left(0.01 \text{Pa/K}\right)^2} }$
- 9) Temperature given Thermal Pressure Coefficient, Compressibility Factors and Cv

$$ag{T_{\mathrm{Cv}}} = rac{\left(\left(rac{1}{\mathrm{K_{\mathrm{S}}}}
ight) - \left(rac{1}{\mathrm{K_{\mathrm{T}}}}
ight)
ight) \cdot
ho \cdot \mathrm{C_{v}}}{\Lambda^{2}}$$

Open Calculator 🗗

10) Thermal Pressure Coefficient given Compressibility Factors and Cp


 $\Lambda_{
m coeff} = \sqrt{rac{\left(\left(rac{1}{K_{
m S}}
ight) - \left(rac{1}{K_{
m T}}
ight)
ight) \cdot
ho \cdot \left(C_{
m p} - [R]
ight)}{T}}$

Open Calculator 🗗

ex

$$1.126928 Pa/K = \sqrt{\frac{\left(\left(\frac{1}{70m^2/N}\right) - \left(\frac{1}{75m^2/N}\right)\right) \cdot 997kg/m^3 \cdot (122J/K^*mol - [R])}{85K}}$$

11) Thermal Pressure Coefficient given Compressibility Factors and Cv

Open Calculator

$$= 1.07266 \mathrm{Pa/K} = \sqrt{\frac{\left(\left(\frac{1}{70\mathrm{m^2/N}}\right) - \left(\frac{1}{75\mathrm{m^2/N}}\right)\right) \cdot 997\mathrm{kg/m^3} \cdot 103\mathrm{J/K^*mol}}{85\mathrm{K}} }$$

12) Volume given Relative Size of Fluctuations in Particle Density

ex
$$1.7\text{E}^17\text{L} = \frac{15}{75\text{m}^2/\text{N} \cdot [\text{BoltZ}] \cdot 85\text{K} \cdot \left((997\text{kg/m}^3)^2 \right)}$$

13) Volumetric Coefficient of Thermal Expansion given Compressibility Factors and Cp

$$lpha_{
m comp} = \sqrt{rac{({
m K_T} - {
m K_S}) \cdot
ho \cdot {
m C_p}}{{
m T}}}$$

Open Calculator 2

14) Volumetric Coefficient of Thermal Expansion given Compressibility Factors and Cv

$$lpha_{
m comp} = \sqrt{rac{(K_T - K_S) \cdot
ho \cdot (C_v + [R])}{T}}$$

Open Calculator G

$$\boxed{80.79768 \mathrm{K}^{\text{--}1} = \sqrt{\frac{(75 \mathrm{m}^{2}/\mathrm{N} - 70 \mathrm{m}^{2}/\mathrm{N}) \cdot 997 \mathrm{kg/m}^{3} \cdot (103 \mathrm{J/K*mol} + [\mathrm{R}])}{85 \mathrm{K}} }$$

Variables Used

- C_p Molar Specific Heat Capacity at Constant Pressure (Joule Per Kelvin Per Mole)
- C_v Molar Specific Heat Capacity at Constant Volume (Joule Per Kelvin Per Mole)
- Ks Isentropic Compressibility (Square Meter per Newton)
- **K**_T Isothermal Compressibility (Square Meter per Newton)
- **T** Temperature (Kelvin)
- T_{Cp} Temperature given Cp (Kelvin)
- T_{Cv} Temperature given Cv (Kelvin)
- **T**_f Temperature given fluctuations (Kelvin)
- T_{TE} Temperature given Coefficient of Thermal Expansion (Kelvin)
- V Volume of Gas (Liter)
- V_f Volume of Gas given fluctuation size (Liter)
- V_{m (ideal)} Molar Volume of Ideal Gas (Liter)
- V_m Molar Volume of Real Gas (Liter)
- V_{molar} Molar Volume of Gas (Liter)
- V_{sound} Speed of Sound given IC (Meter per Hour)
- **Z** Compressibility Factor
- Z_{ktog} Compressibility Factor for KTOG
- α Volumetric Coefficient of Thermal Expansion (1 Per Kelvin)
- α_{comp} Volumetric Coefficient of Compressibility (1 Per Kelvin)
- ΔN² Relative Size of Fluctuations
- ΔNr² Relative Size of Fluctuation
- ↑ Thermal Pressure Coefficient (Pascal per Kelvin)
- Λ_{coeff} Coefficient of Thermal Pressure (Pascal per Kelvin)
- p Density (Kilogram per Cubic Meter)

• **P**sound Density of Propagating Medium (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [BoltZ], 1.38064852E-23 Joule/Kelvin Boltzmann constant
- Constant: [R], 8.31446261815324 Joule / Kelvin * Mole Universal gas constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Temperature in Kelvin (K)
 Temperature Unit Conversion
- Measurement: Volume in Liter (L)

 Volume Unit Conversion
- Measurement: Speed in Meter per Hour (m/h)
 Speed Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Compressibility in Square Meter per Newton (m²/N)

 Compressibility Unit Conversion
- Measurement: Slope of Coexistence Curve in Pascal per Kelvin (Pa/K)

 Slope of Coexistence Curve Unit Conversion
- Measurement: Thermal Expansion in 1 Per Kelvin (K⁻¹)

 Thermal Expansion Unit Conversion
- Measurement: Molar Specific Heat Capacity at Constant Pressure in Joule Per Kelvin Per Mole (J/K*mol)
 Molar Specific Heat Capacity at Constant Pressure Unit Conversion
- Measurement: Molar Specific Heat Capacity at Constant Volume in Joule Per Kelvin Per Mole (J/K*mol)
 Molar Specific Heat Capacity at Constant Volume Unit Conversion

Check other formula lists

- Important Calculator of Compressibility Formulas
- Isentropic Compressibility Formulas
- Isothermal Compressibility
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2023 | 1:06:05 AM UTC

Please leave your feedback here...

