calculatoratoz.com

()

Bending Stress Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Bending Stress Formulas

Bending Stress \mathbb{E}

Beam of Uniform Strength \mathbb{C}

1) Beam Breadth of Uniform Strength for Simply Supported Beam when Load is at Centre
$f \times B=\frac{3 \cdot P \cdot a}{\sigma \cdot d_{e}^{2}}$
Open Calculator
ex $96.95291 \mathrm{~mm}=\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{1200 \mathrm{~Pa} \cdot(285 \mathrm{~mm})^{2}}$
2) Beam Depth of Uniform Strength for Simply Supported Beam when Load is at Centre
$f_{x} d_{e}=\sqrt{\frac{3 \cdot P \cdot a}{B \cdot \sigma}}$
Open Calculator
$\boldsymbol{e x} 280.6239 \mathrm{~mm}=\sqrt{\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{100.0003 \mathrm{~mm} \cdot 1200 \mathrm{~Pa}}}$
3) Loading of Beam of Uniform Strength
$f \mathrm{x} P=\frac{\sigma \cdot \mathrm{B} \cdot \mathrm{d}_{\mathrm{e}}^{2}}{3 \cdot \mathrm{a}}$
ex $0.154715 \mathrm{kN}=\frac{1200 \mathrm{~Pa} \cdot 100.0003 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}{3 \cdot 21 \mathrm{~mm}}$
4) Stress of Beam of Uniform Strength
$f \mathrm{x} \sigma=\frac{3 \cdot \mathrm{P} \cdot \mathrm{a}}{\mathrm{B} \cdot \mathrm{d}_{\mathrm{e}}^{2}}$
Open Calculator
ex $1163.431 \mathrm{~Pa}=\frac{3 \cdot 0.15 \mathrm{kN} \cdot 21 \mathrm{~mm}}{100.0003 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}$

Section Modulus for Various Shapes

5) Allowable Bending Stress

$$
\mathrm{fx} \mathrm{f}=3 \cdot \mathrm{w} \cdot \frac{\mathrm{~L}}{2 \cdot \mathrm{~b}_{\text {Beam }} \cdot \mathrm{d}_{\text {Beam }}^{2}}
$$

6) Beam Width for Uniform Strength in Bending Stress
$f x \mathrm{~b}_{\text {Beam }}=3 \cdot \mathrm{w} \cdot \frac{\mathrm{L}}{2 \cdot \mathrm{f} \cdot \mathrm{d}_{\text {Beam }}^{2}}$
Open Calculator
ex $312.5 \mathrm{~mm}=3 \cdot 50 \mathrm{kN} \cdot \frac{5000 \mathrm{~mm}}{2 \cdot 120 \mathrm{MPa} \cdot(100 \mathrm{~mm})^{2}}$
7) Breadth of Rectangular Shape given Section Modulus
$f \mathrm{f} \quad \mathrm{b}=\frac{6 \cdot \mathrm{Z}}{\mathrm{d}^{2}}$
Open Calculator
ex $300.0362 \mathrm{~mm}=\frac{6 \cdot 0.04141 \mathrm{~m}^{3}}{(910 \mathrm{~mm})^{2}}$
8) Depth of Beam for Uniform Strength in Bending Stress
$f \mathbf{f} \mathrm{~d}_{\text {Beam }}=\sqrt{\frac{3 \cdot \mathrm{w} \cdot \mathrm{L}}{\mathrm{f} \cdot 2 \cdot \mathrm{~b}_{\text {Beam }}}}$
Open Calculator
ex $100.0801 \mathrm{~mm}=\sqrt{\frac{3 \cdot 50 \mathrm{kN} \cdot 5000 \mathrm{~mm}}{120 \mathrm{MPa} \cdot 2 \cdot 312 \mathrm{~mm}}}$
9) Depth of Rectangular Shape given Section Modulus
$f x d=\sqrt{\frac{6 \cdot Z}{b}}$

Open Calculator

ex $910.0549 \mathrm{~mm}=\sqrt{\frac{6 \cdot 0.04141 \mathrm{~m}^{3}}{300 \mathrm{~mm}}}$
10) Diameter of Circular Shape given Section Modulus
$f_{\mathrm{x}} \Phi=\left(\frac{32 \cdot \mathrm{Z}}{\pi}\right)^{\frac{1}{3}}$
Open Calculator
ex $749.9548 \mathrm{~mm}=\left(\frac{32 \cdot 0.04141 \mathrm{~m}^{3}}{\pi}\right)^{\frac{1}{3}}$
11) Inner Breadth of Hollow Rectangular Shape
$f_{\mathrm{x}} \mathrm{B}_{\mathrm{i}}=\frac{\left(6 \cdot \mathrm{Z} \cdot \mathrm{D}_{\mathrm{o}}\right)+\left(\mathrm{B}_{\mathrm{o}} \cdot \mathrm{D}_{\mathrm{o}}^{3}\right)}{\mathrm{D}_{\mathrm{i}}^{3}}$

Open Calculator 〔

$\boldsymbol{\epsilon x} 2305.284 \mathrm{~mm}=\frac{\left(6 \cdot 0.04141 \mathrm{~m}^{3} \cdot 1200 \mathrm{~mm}\right)+\left(800 \mathrm{~mm} \cdot 1200 \mathrm{~mm}^{3}\right)}{(900 \mathrm{~mm})^{3}}$
12) Inner Depth of Hollow Rectangular Shape
$f_{x} D_{i}=\left(\frac{\left(6 \cdot Z \cdot D_{o}\right)+\left(B_{o} \cdot D_{o}^{3}\right)}{B_{i}}\right)^{\frac{1}{3}}$

Open Calculator

ex

$1497.939 \mathrm{~mm}=\left(\frac{\left(6 \cdot 0.04141 \mathrm{~m}^{3} \cdot 1200 \mathrm{~mm}\right)+\left(800 \mathrm{~mm} \cdot 1200 \mathrm{~mm}^{3}\right)}{500 \mathrm{~mm}}\right)^{\frac{1}{3}}$
13) Inner Diameter of Hollow Circular Shape in Bending Stress
$f \mathbf{x} d_{i}=\left(\left(d_{o}^{4}\right)-\left(32 \cdot Z \cdot \frac{d_{o}}{\pi}\right)\right)^{\frac{1}{4}}$
Open Calculator
ex $700 \mathrm{~mm}=\left(\left((700 \mathrm{~mm})^{4}\right)-\left(32 \cdot 0.04141 \mathrm{~m}^{3} \cdot \frac{700 \mathrm{~mm}}{\pi}\right)\right)^{\frac{1}{4}}$
14) Load on Beam for Uniform Strength in Bending Stress

$\mathrm{fx} \mathrm{w}=\frac{\mathrm{f} \cdot\left(2 \cdot \mathrm{~b}_{\text {Beam }} \cdot \mathrm{d}_{\text {Beam }}^{2}\right)}{3 \cdot \mathrm{~L}}$
Open Calculator
ex $49.92 \mathrm{kN}=\frac{120 \mathrm{MPa} \cdot\left(2 \cdot 312 \mathrm{~mm} \cdot(100 \mathrm{~mm})^{2}\right)}{3 \cdot 5000 \mathrm{~mm}}$

15) Outer Breadth of Hollow Rectangular Shape

$f \mathrm{x} \mathrm{B}_{\mathrm{o}}=\frac{\left(6 \cdot \mathrm{Z} \cdot \mathrm{D}_{\mathrm{o}}\right)+\left(\mathrm{B}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}^{3}\right)}{\mathrm{D}_{\mathrm{o}}^{3}}$

Open Calculator

$383.4792 \mathrm{~mm}=\frac{\left(6 \cdot 0.04141 \mathrm{~m}^{3} \cdot 1200 \mathrm{~mm}\right)+\left(500 \mathrm{~mm} \cdot(900 \mathrm{~mm})^{3}\right)}{(3)}$
$(1200 \mathrm{~mm})^{3}$
16) Section Modulus of Circular Shape
$f \mathrm{x} Z=\frac{\pi \cdot \Phi^{3}}{32}$
Open Calculator
ex $0.041417 \mathrm{~m}^{3}=\frac{\pi \cdot 750 \mathrm{~mm}^{3}}{32}$
17) Section Modulus of Hollow Circular Shape
$\mathrm{fx}_{\mathrm{x}} \mathrm{Z}=\frac{\pi \cdot\left(\mathrm{d}_{\mathrm{o}}^{4}-\mathrm{d}_{\mathrm{i}}^{4}\right)}{32 \cdot \mathrm{~d}_{\mathrm{o}}}$
Open Calculator
ex $0.022608 \mathrm{~m}^{3}=\frac{\pi \cdot\left(700 \mathrm{~mm}^{4}-530 \mathrm{~mm}^{4}\right)}{32 \cdot 700 \mathrm{~mm}}$
18) Section Modulus of Hollow Rectangular Shape

$$
f_{\mathrm{x}} \mathrm{Z}=\frac{\left(\mathrm{B}_{\mathrm{o}} \cdot \mathrm{D}_{\mathrm{o}}^{3}\right)-\left(\mathrm{B}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}^{3}\right)}{6 \cdot \mathrm{D}_{\mathrm{o}}}
$$

ex $0.141375 \mathrm{~m}^{3}=\frac{\left(800 \mathrm{~mm} \cdot 1200 \mathrm{~mm}^{3}\right)-\left(500 \mathrm{~mm} \cdot(900 \mathrm{~mm})^{3}\right)}{6 \cdot 1200 \mathrm{~mm}}$
19) Section Modulus of Rectangular Shape
$f x Z=\frac{b \cdot d^{2}}{6}$
$\operatorname{ex} 0.041405 \mathrm{~m}^{3}=\frac{300 \mathrm{~mm} \cdot(910 \mathrm{~mm})^{2}}{6}$

Variables Used

- a Distance from A end (Millimeter)
- b Width of Cross Section (Millimeter)
- B Width of Beam Section (Millimeter)
- $\mathbf{b}_{\text {Beam }}$ Width of Beam (Millimeter)
- $\mathbf{B}_{\mathbf{j}}$ Inner Breadth of Hollow Rectangular Section (Millimeter)
- Bo Outer Breadth of Hollow Rectangular Section (Millimeter)
- d Depth of Cross Section (Millimeter)
- $\mathbf{d}_{\text {Beam }}$ Depth of Beam (Millimeter)
- $\mathbf{d}_{\mathbf{e}}$ Effective Depth of Beam (Millimeter)
- $\mathbf{d}_{\mathbf{i}}$ Inner Diameter of Shaft (Millimeter)
- $\mathbf{D}_{\mathbf{i}}$ Inner Depth of Hollow Rectangular Section (Millimeter)
- $\mathbf{d}_{\mathbf{o}}$ Outer Diameter of Shaft (Millimeter)
- $\mathbf{D}_{\mathbf{o}}$ Outer Depth of Hollow Rectangular Section (Millimeter)
- f Allowable Bending Stress (Megapascal)
- L Length of Beam (Millimeter)
- P Point Load (Kilonewton)
- w Load on Beam (Kilonewton)
- Z Section Modulus (Cubic Meter)
- $\boldsymbol{\sigma}$ Stress of Beam (Pascal)
- Ф Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Volume in Cubic Meter $\left(\mathrm{m}^{3}\right)$

Volume Unit Conversion

- Measurement: Pressure in Pascal (Pa), Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

Check other formula lists

- Mohr's Circle of Stresses Formulas
- Beam Moments Formulas
- Bending Stress Formulas
- Combined Axial and Bending Loads Formulas
- Elastic Stability of Columns Formulas
- Principal Stress Formulas
- Slope and Deflection Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

