unitsconverters.com

Special Antennas Formulas

List of 34 Special Antennas Formulas

Special Antennas

Array Antennas

1) Beam Width between First Null (BWFN) Broadside Array $工$
$\mathrm{fx} \mathrm{BWFN}=\frac{2 \cdot \lambda_{\mathrm{b}}}{\mathrm{d} \cdot \mathrm{N}}$
ex $171.9064^{\circ}=\frac{2 \cdot 90.01 \mathrm{~m}}{10 \mathrm{~m} \cdot 6}$
2) Beam Width between First Null (BWFN) Endside Array
$f \mathbf{x} \mathrm{BW}_{\mathrm{end}}=2 \cdot \sqrt{\frac{2 \cdot \lambda_{\mathrm{b}}}{\mathrm{N} \cdot \mathrm{d}}}$
ex $198.4894^{\circ}=2 \cdot \sqrt{\frac{2 \cdot 90.01 \mathrm{~m}}{6 \cdot 10 \mathrm{~m}}}$
3) Field Pattern of Broadside Array
fx $\mathrm{E}=\cos \left(\pi \cdot \frac{\cos \left(\Phi_{\mathrm{s}}\right)}{2}\right)$
ex $0.976199=\cos \left(\pi \cdot \frac{\cos \left(278^{\circ}\right)}{2}\right)$

Helical Antennas

4) Axial Ratio of Helical Antenna
$f \mathrm{AR}=\frac{(2 \cdot \mathrm{n})+1}{2 \cdot \mathrm{n}}$
ex $1.083195=\frac{(2 \cdot 6.01)+1}{2 \cdot 6.01}$
5) Beam Width between First Null (BWFN) of Helical Antenna
$\mathrm{fx} \mathrm{BW}_{\mathrm{fn}}=115 \cdot \frac{\mathrm{C}_{\lambda}^{\frac{3}{2}}}{\mathrm{C} \cdot \sqrt{\mathrm{S} \cdot \mathrm{n}}}$
ex $220.6484^{\circ}=115$.

$$
\frac{(0.8 \mathrm{~m})^{\frac{3}{2}}}{1.467 \mathrm{~m} \cdot \sqrt{35.3 \mathrm{~m} \cdot 6.01}}
$$

6) Gain of Helical Antenna
fx $\mathrm{G}_{\mathrm{a}}=11.8+10 \cdot \log 10\left(\mathrm{C}_{\lambda}^{2} \cdot \mathrm{n} \cdot \mathrm{S}\right)$
ex $33.12829 \mathrm{~dB}=11.8+10 \cdot \log 10\left((0.8 \mathrm{~m})^{2} \cdot 6.01 \cdot 35.3 \mathrm{~m}\right)$
7) Half-Power Beamwidth of Helical Antenna
$\mathrm{fx} \mathrm{B}_{\mathrm{hp}}=\frac{52}{\mathrm{C}_{\lambda} \cdot \sqrt{\mathrm{n} \cdot \mathrm{S}}}$
ex $255.6886^{\circ}=\frac{52}{0.8 \mathrm{~m} \cdot \sqrt{6.01 \cdot 35.3 \mathrm{~m}}}$
8) Helix Circumference of Helical Antenna
$f \times \mathrm{C}_{\lambda}=\frac{\mathrm{Z}_{\mathrm{h}}}{140}$
ex $0.8 \mathrm{~m}=\frac{112 \Omega}{140}$
9) Input Impedance of Helical Antenna
$f x \mathrm{Z}_{\mathrm{h}}=140 \cdot \mathrm{C}_{\lambda}$
ex $112 \Omega=140 \cdot 0.8 \mathrm{~m}$
10) Pitch Angle of Helical Antenna
$f \mathbf{x} \alpha=\arctan \left(\frac{\mathrm{S}}{\pi \cdot \mathrm{H}_{\mathrm{d}}}\right)$
ex $48.30345^{\circ}=\arctan \left(\frac{35.3 \mathrm{~m}}{\pi \cdot 10.01 \mathrm{~m}}\right)$

Loop Antennas ©

11) Directivity of Large Loop
$\mathrm{fx} \mathrm{D}=4.25 \cdot \frac{\mathrm{a}}{\lambda_{\mathrm{a}}}$
ex $0.377732=4.25 \cdot \frac{8 \mathrm{~m}^{2}}{90.011 \mathrm{~m}}$
12) Efficiency Factor of Loop Antenna
$f \mathrm{f} K=\frac{\mathrm{R}_{\text {small }}}{\mathrm{R}_{\text {small }}+\mathrm{R}_{\mathrm{L}}}$
ex $0.025552=\frac{0.0118 \Omega}{0.0118 \Omega+0.45 \Omega}$
13) Isotropic Radiation Intensity for Loop Antenna
$f x \mathrm{U}_{\mathrm{ir}}=\frac{\mathrm{U}_{\mathrm{r}}}{\mathrm{A}_{\mathrm{g}}}$
ex $0.09003 \mathrm{~W} / \mathrm{sr}=\frac{27.01 \mathrm{~W} / \mathrm{sr}}{300.01 \mathrm{~dB}}$
14) Quality Factor of Loop Antenna
fx $\mathrm{Q}=\frac{\mathrm{X}_{\mathrm{L}}}{2 \cdot\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\text {small }}\right)}$
ex $0.357298=\frac{0.33 \Omega}{2 \cdot(0.45 \Omega+0.0118 \Omega)}$
15) Radiation Resistance of Large Loop
$f x \mathrm{R}_{\text {large }}=3720 \cdot \frac{\mathrm{a}}{\lambda_{\mathrm{a}}}$
ex $330.6263 \Omega=3720 \cdot \frac{8 \mathrm{~m}^{2}}{90.011 \mathrm{~m}}$
16) Radiation Resistance of Small Loop
$f \times R_{\text {small }}=31200 \cdot \frac{\mathrm{~A}^{2}}{\lambda_{\mathrm{a}}^{4}}$
ex $0.011883 \Omega=31200 \cdot \frac{\left(5 \mathrm{~m}^{2}\right)^{2}}{(90.011 \mathrm{~m})^{4}}$
17) Size of Small Loop
$\mathrm{fx} L=\frac{\lambda_{\mathrm{a}}}{10}$
ex $9.0011 \mathrm{~m}=\frac{90.011 \mathrm{~m}}{10}$
18) Terminal Resistance of Loop Antenna
fx $R_{t}=R_{L}+R_{\text {small }}$
ex $0.4618 \Omega=0.45 \Omega+0.0118 \Omega$

Microstrip Antenna

19) Actual Length of Microstrip Patch
$f x L_{p}=L_{\text {eff }}-2 \cdot \Delta L$
ex $29.45397 \mathrm{~mm}=30.90426103 \mathrm{~mm}-2 \cdot 0.7251475831 \mathrm{~mm}$

20) Effective Dielectric Constant of Substrate

$f \times E_{\text {eff }}=\frac{E_{r}+1}{2}+\left(\frac{E_{r}-1}{2}\right) \cdot\left(\frac{1}{\sqrt{1+12 \cdot\left(\frac{h}{W_{p}}\right)}}\right)$
ex $4.090057=\frac{4.4+1}{2}+\left(\frac{4.4-1}{2}\right) \cdot\left(\frac{1}{\sqrt{1+12 \cdot\left(\frac{1.57 \mathrm{~mm}}{38.01 \mathrm{~mm})}\right.}}\right)$
21) Effective Length of Patch
$f \mathrm{fx} \mathrm{L}_{\mathrm{eff}}=\frac{[\mathrm{c}]}{2 \cdot \mathrm{f}_{\mathrm{res}} \cdot\left(\sqrt{\mathrm{E}_{\mathrm{eff}}}\right)}$
ex $30.88267 \mathrm{~mm}=\frac{[c]}{2 \cdot 2.4 \mathrm{GHz} \cdot(\sqrt{4.09005704})}$
22) Effective Radius of Circular Microstrip Patch
$\mathrm{fx}_{\mathrm{a}} \mathrm{eff}=\mathrm{a}_{\mathrm{c}} \cdot\left(1+\left(\frac{2 \cdot \mathrm{~h}_{\mathrm{o}}}{\pi \cdot \mathrm{a}_{\mathrm{c}} \cdot \mathrm{E}_{\mathrm{r}}}\right) \cdot\left(\ln \left(\frac{\pi \cdot \mathrm{a}_{\mathrm{c}}}{2 \cdot \mathrm{~h}_{\mathrm{o}}}+1.7726\right)\right)\right)^{0.5}$
$174.6228 \mathrm{~cm}=174.538 \mathrm{~cm} \cdot\left(1+\left(\frac{2 \cdot 0.157 \mathrm{~cm}}{\pi \cdot 174.538 \mathrm{~cm} \cdot 4.4}\right) \cdot\left(\ln \left(\frac{\pi \cdot 174.538 \mathrm{~cm}}{2 \cdot 0.157 \mathrm{~cm}}+1.7726\right)\right)^{0.5}\right.$
23) Height of Equilateral Triangular Patch
$f \mathrm{fx} H=\sqrt{\mathrm{S}_{\mathrm{tng}}^{2}-\left(\frac{\mathrm{S}_{\mathrm{tng}}}{2}\right)^{2}}$
$\mathrm{ex} 34.40511 \mathrm{~mm}=\sqrt{(39.7276 \mathrm{~mm})^{2}-\left(\frac{39.7276 \mathrm{~mm}}{2}\right)^{2}}$

24) Length Extention of Patch

fx $\Delta \mathrm{L}=0.412 \cdot \mathrm{~h} \cdot\left(\frac{\left(\mathrm{E}_{\text {eff }}+0.3\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{p}}}{\mathrm{h}}+0.264\right)}{\left(\mathrm{E}_{\mathrm{eff}}-0.264\right) \cdot\left(\frac{\mathrm{W}_{\mathrm{p}}}{\mathrm{h}}+0.8\right)}\right)$
ex $0.726285 \mathrm{~mm}=0.412 \cdot 1.57 \mathrm{~mm} \cdot\left(\frac{(4.09005704+0.3) \cdot\left(\frac{38.01 \mathrm{~mm}}{1.57 \mathrm{~mm}}+0.264\right)}{(4.09005704-0.264) \cdot\left(\frac{38.1 \mathrm{~mm}}{1.57 \mathrm{~mm}}+0.8\right)}\right)$
25) Length of Ground Plate
$f \times L_{\text {gnd }}=6 \cdot h+L_{p}$
ex $38.85 \mathrm{~mm}=6 \cdot 1.57 \mathrm{~mm}+29.43 \mathrm{~mm}$
26) Normalized Wavenumber
$f \times \mathrm{F}_{\mathrm{n}}=\frac{8.791 \cdot 10^{9}}{\mathrm{f}_{\mathrm{res}} \cdot \sqrt{\mathrm{E}_{\mathrm{r}}}}$
ex $1.746227=\frac{8.791 \cdot 10^{9}}{2.4 \mathrm{GHz} \cdot \sqrt{4.4}}$
Open Calculator
27) Physical Radius of Circular Microstrip Patch ©
$\mathrm{fx} \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{F}_{\mathrm{n}}}{\left(1+\left(2 \cdot \frac{\mathrm{~h}_{\mathrm{o}}}{\pi \cdot \mathrm{F}_{\mathrm{n}} \cdot \mathrm{E}_{\mathrm{r}}}\right) \cdot\left(\ln \left(\pi \cdot \frac{\mathrm{F}_{\mathrm{n}}}{2 \cdot \mathrm{~h}_{\mathrm{o}}}+1.7726\right)\right)\right)^{\frac{1}{2}}}$
Open Calculator

$$
\text { ex } 174.538 \mathrm{~cm}=\frac{1.746227005}{\left(1+\left(2 \cdot \frac{0.157 \mathrm{~cm}}{\pi \cdot 1.746227005 \cdot 4 \cdot 4}\right) \cdot\left(\ln \left(\pi \cdot \frac{1.746227005}{2 \cdot 0.157 \mathrm{~cm}}+1.7726\right)\right)\right)^{\frac{1}{2}}}
$$

28) Radiation Resistance of Infinitesimal Dipole
$f \times \mathrm{R}_{\text {isd }}=80 \cdot \pi^{2} \cdot\left(\frac{\mathrm{l}_{\text {isd }}}{\lambda_{\text {isd }}}\right)^{2}$
ex $0.315936 \Omega=80 \cdot \pi^{2} \cdot\left(\frac{0.0024987 \mathrm{~m}}{0.12491352 \mathrm{~m}}\right)^{2}$
29) Resonating Frequency of Equilateral Triangular Patch
$f \times f_{r}=2 \cdot \frac{[c]}{3 \cdot S_{\text {tng }} \cdot \sqrt{E_{r}}}$

$$
\text { ex } 2.39834 \mathrm{GHz}=2 \cdot \frac{[\mathrm{c}]}{3 \cdot 39.7276 \mathrm{~mm} \cdot \sqrt{4.4}}
$$

30) Resonating Frequency of Microstrip Antenna
$f \mathrm{x} \mathrm{f}_{\mathrm{r}}=\frac{[\mathrm{c}]}{2 \cdot L_{\text {eff }} \cdot \sqrt{\mathrm{E}_{\text {eff }}}}$
$2.398323 \mathrm{GHz}=\frac{[\mathrm{c}]}{2 \cdot 30.90426103 \mathrm{~mm} \cdot \sqrt{4.09005704}}$
31) Side Length of Equilateral Triangular Patch
$\mathrm{fx} \mathrm{S}_{\mathrm{tng}}=2 \cdot \frac{[\mathrm{c}]}{3 \cdot \mathrm{f}_{\mathrm{res}} \cdot \sqrt{\mathrm{E}_{\mathrm{r}}}}$
ex $39.70012 \mathrm{~mm}=2$.

$$
\frac{[\mathrm{c}]}{3 \cdot 2.4 \mathrm{GHz} \cdot \sqrt{4.4}}
$$

32) Side Length of Hexagonal Patch
$f \mathrm{f} \mathrm{S}_{\mathrm{hex}}=\frac{\sqrt{2 \cdot \pi} \cdot \mathrm{a}_{\mathrm{eff}}}{\sqrt{5.1962}}$
ex $192.1471 \mathrm{~mm}=\frac{\sqrt{2 \cdot \pi} \cdot 17.47378 \mathrm{~cm}}{\sqrt{5.1962}}$
33) Width of Ground Plate
$f \mathrm{f} \mathrm{W}_{\text {gnd }}=6 \cdot \mathrm{~h}+\mathrm{W}_{\mathrm{p}}$
ex $47.43 \mathrm{~mm}=6 \cdot 1.57 \mathrm{~mm}+38.01 \mathrm{~mm}$
34) Width of Microstrip Patch

[c]
ex $38.00997 \mathrm{~mm}=$

$$
2 \cdot 2.4 \mathrm{GHz} \cdot\left(\sqrt{\frac{4.4+1}{2}}\right)
$$

Variables Used

- a Area of Large Circular Loop (Square Meter)
- A Area of Small Circular Loop (Square Meter)
- $\mathbf{a}_{\mathbf{c}}$ Actual Radius of Circular Microstrip Patch (Centimeter)
- $\mathbf{a}_{\text {eff }}$ Effective Radius of Circular Microstrip Patch (Centimeter)
- $\mathbf{A}_{\mathbf{g}}$ Loop Antenna Gain (Decibel)
- AR Axial Ratio
- B_{hp} Half Power Beam Width (Degree)
- BW end ${ }^{\text {Beam Width between First Null Endside Array (Degree) }}$
- $\mathbf{B W}_{\mathrm{fn}}$ Helical Beam Width of First Null Broadside Array (Degree)
- BWFN Beam Width between First Null Broadside Array (Degree)
- C Operational Circumference (Meter)
- $\mathbf{C}_{\boldsymbol{\lambda}}$ Helix Circumference (Meter)
- d Distance (Meter)
- D Directivity of Large Loop
- E Field Pattern
- $E_{\text {eff }}$ Effective Dielectric Constant of Substrate
- E_{r} Dielectric Constant of Substrate
- F_{n} Normalized Wavenumber
- $\mathbf{f r}_{\mathbf{r}}$ Resonant Frequency (Gigahertz)
- $\mathbf{f r e s}$ Frequency (Gigahertz)
- $\mathbf{G}_{\mathbf{a}}$ Helical Antenna Gain (Decibel)
- \mathbf{h} Thickness of the Substrate (Millimeter)
- H Height of Equilateral Triangular Patch (Millimeter)
- $\mathbf{H}_{\mathbf{d}}$ Helix Diameter (Meter)
- $\mathbf{h}_{\mathbf{o}}$ Thickness of Substrate Microstrip (Centimeter)
- K Efficiency Factor
- L Size of Small Loop (Meter)
- Leff Effective Length of Microstrip Patch (Millimeter)
- $\mathbf{L}_{\mathbf{g n d}}$ Length of Ground Plate (Millimeter)
- $\mathbf{I}_{\text {isd }}$ Length of Infinitesimal Dipole (Meter)
- L_{p} Actual Length of Microstrip Patch (Millimeter)
- n Number of Turns of Helical Antenna
- N Number of Turns of Array Antenna
- Q Quality Factor
- $\mathbf{R}_{\text {isd }}$ Radiation Resistance of Infinitesimal Dipole (Ohm)
- \mathbf{R}_{L} Loss Resistance (Ohm)
- $\mathbf{R}_{\text {large }}$ Radiation Resistance of Large Loop (Ohm)
- $\mathbf{R}_{\text {small }}$ Radiation Resistance of Small Loop (Ohm)
- $\mathbf{R}_{\mathbf{t}}$ Terminal Resistance of Loop Antenna (Ohm)
- S Turn Spacing (Meter)
- $\mathbf{S}_{\text {hex }}$ Side Length of Hexagonal Patch (Millimeter)
- $\mathbf{S}_{\mathrm{tng}}$ Side Length of Equilateral Triangular Patch (Millimeter)
- $\mathbf{U}_{\text {ir }}$ Isotropic Radiation Intensity of Loop Antenna (Watt per Steradian)
- Ur Radiation Intensity in Loop Antenna (Watt per Steradian)
- $\mathbf{W}_{\text {gnd }}$ Width of Ground Plate (Millimeter)
- $\mathbf{W}_{\mathbf{p}}$ Width of Microstrip Patch (Millimeter)
- $X_{\text {L }}$ Inductive Reactance (Ohm)
- $\mathbf{Z}_{\mathbf{h}}$ Input Impedance (Ohm)
- a Pitch Angle (Degree)
- $\Delta \mathrm{L}$ Length Extension of Microstrip Patch (Millimeter)
- $\boldsymbol{\lambda}_{\mathbf{a}}$ Wavelength in Loop Antenna (Meter)
- $\boldsymbol{\lambda}_{\mathbf{b}}$ Broad Side Array Wavelength (Meter)
- $\boldsymbol{\lambda}_{\text {isd }}$ Wavelength of Dipole (Meter)
- $\boldsymbol{\Phi}_{\mathbf{s}}$ Phase Shift (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [c], 299792458.0 Meter/Second

Light speed in vacuum

- Function: arctan, arctan(Number)

Inverse trigonometric tangent function

- Function: cos, $\cos ($ Angle)

Trigonometric cosine function

- Function: ctan, ctan(Angle)

Trigonometric cotangent function

- Function: In, In(Number)

Natural logarithm function (base e)

- Function: $\log 10, \log 10($ Number $)$

Common logarithm function (base 10)

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m), Millimeter (mm), Centimeter (cm) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion $\sqrt{ }$

- Measurement: Frequency in Gigahertz (GHz)

Frequency Unit Conversion \mathcal{G}

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Wavelength in Meter (m)

Wavelength Unit Conversion

- Measurement: Sound in Decibel (dB)

Sound Unit Conversion

- Measurement: Radiant Intensity in Watt per Steradian (W/sr)

Radiant Intensity Unit Conversion

Check other formula lists

- Antenna Theory Parameters Formulas
- Wave Propagation Formulas
- Special Antennas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

