
calculatoratoz.com

0

Deflection in Spring Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Deflection in Spring Formulas

Deflection in Spring

Close-Coiled Helical Spring ©

1) Deflection for Close-Coiled Helical Spring
$\mathrm{fx} \delta=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}$
Open Calculator
ex $3.4 \mathrm{~mm}=\frac{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
2) Diameter of Spring Wire or Coil given Deflection for Close-Coiled Helical Spring
$f \mathbf{f x}=\left(\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \delta}\right)^{\frac{1}{4}}$
ex $45 \mathrm{~mm}=\left(\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{40 \mathrm{GPa} \cdot 3.4 \mathrm{~mm}}\right)^{\frac{1}{4}}$

3) Load Applied on Spring Axially given Deflection for Close-Coiled Helical Spring

$f \times W_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~N} \cdot \mathrm{R}^{3}}$
Open Calculator
$\mathrm{ex} 85 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 9 \cdot(225 \mathrm{~mm})^{3}}$
4) Mean Radius of Spring given Deflection for Close-Coiled Helical Spring E
$\mathrm{fx} R=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\mathrm{load}} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$
$\mathrm{ex} 225 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$
5) Modulus of Rigidity given Deflection for Close-Coiled Helical Spring
$f \times G_{\text {Torsion }}=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Open Calculator
ex $40 \mathrm{GPa}=\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 45 \mathrm{~mm}^{4}}$
6) Number of Spring Coils given Deflection for Close-Coiled Helical Spring \square
$\mathrm{fx}_{\mathrm{x}} \mathrm{N}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\mathrm{load}} \cdot \mathrm{R}^{3}}$
Open Calculator
ex $9=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3}}$

Spring of Square Section Wire ©

7) Deflection of Square Section Wire Spring

$$
\mathrm{fx} \delta=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{C}_{m}}
$$

ex $2.374688 \mathrm{~mm}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
8) Load given Deflection of Square Section Wire Spring
$f \mathbf{f} \mathrm{~W}_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}$
ex $121.7002 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}$
9) Mean radius given Deflection of Square Section Wire Spring
$\mathrm{fx} \mathrm{R}=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$
Open Calculator
$\mathrm{ex} 253.5946 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$
10) Modulus of Rigidity using Deflection of Square Section Wire Spring
$f \times G_{\text {Torsion }}=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Open Calculator
ex $27.9375 \mathrm{GPa}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot(45 \mathrm{~mm})^{4}}$
11) Number of Coils given Deflection of Square Section Wire Spring
$\mathrm{fx} \mathrm{N}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~W}_{\mathrm{load}}}$
ex $12.88591=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 85 \mathrm{~N}}$
12) Width given Deflection of Square Section Wire Spring
$\mathrm{fx} \mathrm{d}=\left(\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{G}_{\text {Torsion }}}\right)^{\frac{1}{4}}$
Open Calculator
ex $41.13812 \mathrm{~mm}=\left(\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa}}\right)^{\frac{1}{4}}$

Leaf Springs

13) Deflection in Leaf Spring given Moment $\sqrt{ }$
$f \times \delta=\left(\frac{M \cdot L^{2}}{8 \cdot E \cdot I}\right)$
Open Calculator
ex $4.584964 \mathrm{~mm}=\left(\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}\right)$
14) Length given Deflection in Leaf Spring
$\mathrm{Ex}_{\mathrm{x}} \mathrm{L}=\sqrt{\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{M}}}$
ex $3590.935 \mathrm{~mm}=\sqrt{\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{67.5 \mathrm{kN}^{*} \mathrm{~m}}}$
15) Modulus of Elasticity given Deflection in Leaf Spring and Moment

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{E}=\frac{\mathrm{M} \cdot \mathrm{~L}^{2}}{8 \cdot \delta \cdot \mathrm{I}}
$$

Open Calculator

ex $26970.38 \mathrm{MPa}=\frac{67.5 \mathrm{kN} \mathrm{N}^{*} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 3.4 \mathrm{~mm} \cdot 0.0016 \mathrm{~m}^{4}}$
16) Moment given Deflection in Leaf Spring $\boxed{\boxed{ } 1}$

$$
\begin{aligned}
& f \times \mathrm{M}=\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{~L}^{2}} \\
& \mathbf{e x} 50.05492 \mathrm{kN}^{*} \mathrm{~m}=\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{(4170 \mathrm{~mm})^{2}}
\end{aligned}
$$

17) Moment of Inertia given Deflection in Leaf Spring

$$
f \mathrm{f} I=\frac{\mathrm{M} \cdot \mathrm{~L}^{2}}{8 \cdot \mathrm{E} \cdot \delta}
$$

ex $0.002158 \mathrm{~m}^{4}=\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 3.4 \mathrm{~mm}}$

For Centrally Loaded Beam

18) Deflection in Leaf Spring given Load

$f \mathbf{x} \delta_{\text {Leaf }}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Open Calculator
$\mathrm{ex} 494.702 \mathrm{~mm}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
19) Load given Deflection in Leaf Spring
$f \mathrm{x} \mathrm{W}_{\text {load }}=\frac{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}{3 \cdot \mathrm{~L}^{3}}$
Open Calculator
ex $84.87939 \mathrm{~N}=\frac{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}{3 \cdot(4170 \mathrm{~mm})^{3}}$
20) Modulus of Elasticity in Leaf Spring given Deflection
$\mathrm{fx} \mathrm{E}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\mathrm{Leaf}} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Open Calculator
ex $20028.42 \mathrm{MPa}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$

咠
21) Number of plates given Deflection in Leaf Spring
$f \mathrm{x} n=\frac{3 \cdot W_{\text {load }} \cdot L^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot E \cdot b \cdot t^{3}}$
Open Calculator
ex $8.011368=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
22) Thickness given Deflection in Leaf Spring $工$
$f_{x} t=\left(\frac{3 \cdot W_{\text {load }} \cdot L^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot E \cdot n \cdot b}\right)^{\frac{1}{3}}$
$\boldsymbol{\epsilon x} 460.2178 \mathrm{~mm}=\left(\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm}}\right)^{\frac{1}{3}}$
23) Width given Deflection in Leaf Spring
$f \mathrm{fx}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\mathrm{Leaf}} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3}}$
Open Calculator
ex $300.4263 \mathrm{~mm}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3}}$

胃

Variables Used

- b Width of Cross Section (Millimeter)
- d Diameter of Spring (Millimeter)
- E Young's Modulus (Megapascal)
- GTorsion Modulus of Rigidity (Gigapascal)
- I Area Moment of Inertia (Meter ${ }^{4}$)
- L Length in Spring (Millimeter)
- M Bending Moment (Kilonewton Meter)
- \mathbf{n} Number of Plates
- N Number of Coils
- R Mean Radius (Millimeter)
- t Thickness of Section (Millimeter)
- Wload Spring Load (Newton)
- $\bar{\delta}$ Deflection of Spring (Millimeter)
- $\bar{\delta}_{\text {Leaf }}$ Deflection of Leaf Spring (Millimeter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Gigapascal (GPa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Moment of Force in Kilonewton Meter (kN*m)

Moment of Force Unit Conversion

- Measurement: Second Moment of Area in Meter ${ }^{4}\left(m^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Deflection in Spring Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

