

Deflection in Spring Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Deflection in Spring Formulas

Deflection in Spring 🗗

Close-Coiled Helical Spring

1) Deflection for Close-Coiled Helical Spring

$$\delta = rac{64 \cdot \mathrm{W_{load} \cdot R^3 \cdot N}}{\mathrm{G_{Torsion} \cdot d}^4}$$

Open Calculator

$$= \frac{64 \cdot 85 \text{N} \cdot (225 \text{mm})^3 \cdot 9}{40 \text{GPa} \cdot (45 \text{mm})^4}$$

2) Diameter of Spring Wire or Coil given Deflection for Close-Coiled Helical Spring

$$\mathbf{f}$$
 $\mathbf{d} = \left(rac{64 \cdot W_{load} \cdot R^3 \cdot N}{G_{Torsion} \cdot \delta}
ight)^{rac{1}{4}}$

Open Calculator

$$\texttt{ex} \ 45 \text{mm} = \left(\frac{64 \cdot 85 \text{N} \cdot 225 \text{mm}^3 \cdot 9}{40 \text{GPa} \cdot 3.4 \text{mm}}\right)^{\frac{1}{4}}$$

3) Load Applied on Spring Axially given Deflection for Close-Coiled Helical Spring

 $\left| \mathbf{W}_{\mathrm{load}} = rac{\delta \cdot \mathrm{G}_{\mathrm{Torsion}} \cdot \mathrm{d}^4}{64 \cdot \mathrm{N} \cdot \mathrm{R}^3}
ight|$

Open Calculator

 $85 \mathrm{N} = \frac{3.4 \mathrm{mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{mm}^4}{64 \cdot 9 \cdot \left(225 \mathrm{mm}\right)^3}$

4) Mean Radius of Spring given Deflection for Close-Coiled Helical Spring

 $m R = \left(rac{\delta \cdot G_{Torsion} \cdot d^4}{64 \cdot W_{load} \cdot N}
ight)^{rac{1}{3}}$

Open Calculator

 $oxed{ex} 225 \mathrm{mm} = \left(rac{3.4 \mathrm{mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{mm}^4}{64 \cdot 85 \mathrm{N} \cdot 9}
ight)^{rac{1}{3}}$

5) Modulus of Rigidity given Deflection for Close-Coiled Helical Spring

 $extbf{K}G_{ ext{Torsion}} = rac{64 \cdot W_{ ext{load}} \cdot R^3 \cdot N}{\delta \cdot d^4}$

Open Calculator

 $oxed{40 ext{GPa} = rac{64 \cdot 85 ext{N} \cdot 225 ext{mm}^3 \cdot 9}{3.4 ext{mm} \cdot 45 ext{mm}^4}}$

6) Number of Spring Coils given Deflection for Close-Coiled Helical Spring

 $N = rac{\delta \cdot G_{Torsion} \cdot d^4}{64 \cdot W_{load} \cdot R^3}$

Open Calculator

 $= \frac{3.4 \text{mm} \cdot 40 \text{GPa} \cdot (45 \text{mm})^4}{64 \cdot 85 \text{N} \cdot (225 \text{mm})^3}$

Spring of Square Section Wire

7) Deflection of Square Section Wire Spring

Open Calculator 🗗

8) Load given Deflection of Square Section Wire Spring

Open Calculator

ex $121.7002N = \frac{3.4 \text{mm} \cdot 40 \text{GPa} \cdot (45 \text{mm})^4}{44.7 \cdot (225 \text{mm})^3 \cdot 9}$

9) Mean radius given Deflection of Square Section Wire Spring

 $m R = \left(rac{\delta \cdot G_{Torsion} \cdot d^4}{44.7 \cdot W_{load} \cdot N}
ight)^{rac{1}{3}}$

Open Calculator

10) Modulus of Rigidity using Deflection of Square Section Wire Spring

Open Calculator

11) Number of Coils given Deflection of Square Section Wire Spring

Open Calculator

ex $12.88591 = \frac{3.4 \text{mm} \cdot 40 \text{GPa} \cdot (45 \text{mm})^4}{44.7 \cdot (225 \text{mm})^3 \cdot 85 \text{N}}$

12) Width given Deflection of Square Section Wire Spring

 \mathbf{f} $\mathbf{d} = \left(rac{44.7 \cdot W_{\mathrm{load}} \cdot R^3 \cdot N}{\delta \cdot G_{\mathrm{Torsion}}}
ight)^{rac{1}{4}}$

Open Calculator 🗗

ex 41.13812mm = $\left(\frac{44.7 \cdot 85 \text{N} \cdot (225 \text{mm})^3 \cdot 9}{3.4 \text{mm} \cdot 40 \text{GPa}}\right)^{\frac{1}{4}}$

Leaf Springs

13) Deflection in Leaf Spring given Moment

 $\delta = \left(rac{\mathbf{M}\cdot\mathbf{L}^2}{8\cdot\mathbf{E}\cdot\mathbf{I}}
ight)$

Open Calculator 🗗

ex 4.584964mm = $\left(\frac{67.5$ kN*m·(4170mm)²}{8·20000MPa·0.0016m⁴}\right)

14) Length given Deflection in Leaf Spring

 $\mathbf{L} = \sqrt{rac{8 \cdot \delta \cdot \mathbf{E} \cdot \mathbf{I}}{\mathbf{M}}}$

Open Calculator 🚰

15) Modulus of Elasticity given Deflection in Leaf Spring and Moment

Open Calculator 🗗

$$8 \cdot \delta \cdot I$$

ex
$$26970.38 \text{MPa} = \frac{67.5 \text{kN*m} \cdot (4170 \text{mm})^2}{8 \cdot 3.4 \text{mm} \cdot 0.0016 \text{m}^4}$$

16) Moment given Deflection in Leaf Spring

Open Calculator

$$= \frac{50.05492 \text{kN*m} = \frac{8 \cdot 3.4 \text{mm} \cdot 20000 \text{MPa} \cdot 0.0016 \text{m}^{4}}{(4170 \text{mm})^{2}} }$$

17) Moment of Inertia given Deflection in Leaf Spring

Open Calculator 🚰

$$= \frac{0.002158 \text{m}^4}{8 \cdot 20000 \text{MPa} \cdot 3.4 \text{mm}}$$

For Centrally Loaded Beam

18) Deflection in Leaf Spring given Load 🗗

 $\delta_{
m Leaf} = rac{3 \cdot {
m W}_{
m load} \cdot {
m L}^3}{8 \cdot {
m E} \cdot {
m n} \cdot {
m b} \cdot {
m t}^3}$

Open Calculator

19) Load given Deflection in Leaf Spring

 $\mathbf{w}_{ ext{load}} = rac{8 \cdot \delta_{ ext{Leaf}} \cdot \mathbf{E} \cdot \mathbf{n} \cdot \mathbf{b} \cdot \mathbf{t}^3}{3 \cdot \mathbf{L}^3}$

Open Calculator 🗗

20) Modulus of Elasticity in Leaf Spring given Deflection

 $\mathbf{E} = rac{3 \cdot \mathrm{W_{load} \cdot L^3}}{8 \cdot \delta_{\mathrm{Loof}} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t^3}}$

Open Calculator 🚰

21) Number of plates given Deflection in Leaf Spring

 $n = rac{3 \cdot W_{load} \cdot L^3}{8 \cdot \delta_{Leaf} \cdot E \cdot b \cdot t^3}$

Open Calculator

22) Thickness given Deflection in Leaf Spring

 $\mathbf{t} = \left(rac{3 \cdot W_{load} \cdot L^3}{8 \cdot \delta_{Leaf} \cdot E \cdot n \cdot b}
ight)^{rac{1}{3}}$

Open Calculator

23) Width given Deflection in Leaf Spring

 $b = rac{3 \cdot W_{load} \cdot L^3}{8 \cdot \delta_{Leaf} \cdot E \cdot n \cdot t^3}$

Open Calculator 🗗

Variables Used

- b Width of Cross Section (Millimeter)
- **d** Diameter of Spring (Millimeter)
- E Young's Modulus (Megapascal)
- G_{Torsion} Modulus of Rigidity (Gigapascal)
- I Area Moment of Inertia (Meter⁴)
- L Length in Spring (Millimeter)
- M Bending Moment (Kilonewton Meter)
- n Number of Plates
- N Number of Coils
- R Mean Radius (Millimeter)
- **t** Thickness of Section (Millimeter)
- W_{load} Spring Load (Newton)
- δ Deflection of Spring (Millimeter)
- δ_{l eaf} Deflection of Leaf Spring (Millimeter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Length in Millimeter (mm)

 Length Unit Conversion
- Measurement: Pressure in Gigapascal (GPa)

 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m)
 Moment of Force Unit Conversion
- Measurement: Second Moment of Area in Meter⁴ (m⁴)
 Second Moment of Area Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

Deflection in Spring Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

2/1/2024 | 3:21:35 AM UTC

Please leave your feedback here...

