Deviazione in primavera Formule

La più ampia copertura di calcolatrici e in crescita - 30.000+ calcolatrici! Calcola con un'unità diversa per ogni variabile - Nella conversione di unità costruita!
La più ampia raccolta di misure e unità - 250+ misurazioni!

Sentiti libero di CONDIVIDERE questo documento con i tuoi amici!

Lista di 23 Deviazione in primavera Formule

Deviazione in primavera ©

Molla elicoidale a spirale chiusa

1) Carico applicato sulla molla Deflessione data assialmente per molla elicoidale ad avvolgimento chiuso
$f \mathrm{fx} \mathrm{W}_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~N} \cdot \mathrm{R}^{3}}$
Apri Calcolatrice
ex $85 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 9 \cdot(225 \mathrm{~mm})^{3}}$
2) Deflessione per molla elicoidale ad avvolgimento chiuso
$\mathrm{fx} \delta=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}$
Apri Calcolatrice
ex $3.4 \mathrm{~mm}=\frac{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
3) Diametro del filo della molla o della bobina data la deflessione per la molla elicoidale ad avvolgimento chiuso
$f_{x} \mathrm{~d}=\left(\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \delta}\right)^{\frac{1}{4}}$
Apri Calcolatrice
ex $45 \mathrm{~mm}=\left(\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{40 \mathrm{GPa} \cdot 3.4 \mathrm{~mm}}\right)^{\frac{1}{4}}$
4) Modulo di rigidità data la deflessione per una molla elicoidale a spirale chiusa
$f \times \mathrm{G}_{\text {Torsion }}=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Apri Calcolatrice
ex $40 \mathrm{GPa}=\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 45 \mathrm{~mm}^{4}}$
5) Numero di spire della molla data la deflessione per una molla elicoidale a spirale chiusa
$\mathrm{fx} \mathrm{N}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3}}$
Apri Calcolatrice
ex $9=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3}}$
6) Raggio medio della molla data la deflessione per la molla elicoidale ad avvolgimento chiuso
$\mathrm{fx} R=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$
Apri Calcolatrice
ex $225 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$

Molla di filo a sezione quadrata

7) Carico dato Flessione della molla del filo a sezione quadrata
$f \times \mathrm{W}_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}$
Apri Calcolatrice
ex $121.7002 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}$
8) Flessione della molla del filo di sezione quadrata
$\mathrm{fx} \delta=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}$
Apri Calcolatrice
ex $2.374688 \mathrm{~mm}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
9) Larghezza data Deflessione della molla del filo a sezione quadrata
$\mathrm{fx} \mathrm{d}=\left(\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{G}_{\text {Torsion }}}\right)^{\frac{1}{4}}$
Apri Calcolatrice
ex $41.13812 \mathrm{~mm}=\left(\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa}}\right)^{\frac{1}{4}}$
10) Modulo di rigidità utilizzando la deflessione della molla a filo a sezione quadrata
$f \times \mathrm{G}_{\text {Torsion }}=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Apri Calcolatrice
ex $27.9375 \mathrm{GPa}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot(45 \mathrm{~mm})^{4}}$
11) Numero di spire data la deflessione della molla del filo a sezione quadrata
fx $\mathrm{N}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~W}_{\text {load }}}$
Apri Calcolatrice [3]
ex $12.88591=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 85 \mathrm{~N}}$
12) Raggio medio data la deflessione della molla del filo a sezione quadrata
$f \mathrm{f} R=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$
Apri Calcolatrice $\boxed{\square}$
ex $253.5946 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$

Molle a balestra

13) Deflessione della molla a balestra dato il momento
$\mathrm{fx} \delta=\left(\frac{\mathrm{M} \cdot \mathrm{L}^{2}}{8 \cdot \mathrm{E} \cdot \mathrm{I}}\right)$
Apri Calcolatrice
ex $4.584964 \mathrm{~mm}=\left(\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}\right)$
14) Lunghezza data Deflessione in balestra
$\mathrm{fx} L=\sqrt{\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{M}}}$

Apri Calcolatrice

ex $3590.935 \mathrm{~mm}=\sqrt{\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{67.5 \mathrm{kN}^{*} \mathrm{~m}}}$
15) Modulo di elasticità data deflessione in balestra e momento

$$
f \mathrm{E}=\frac{\mathrm{M} \cdot \mathrm{~L}^{2}}{8 \cdot \delta \cdot I}
$$

ex $26970.38 \mathrm{MPa}=\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 3.4 \mathrm{~mm} \cdot 0.0016 \mathrm{~m}^{4}}$
16) Momento dato Deflessione nella balestra

$$
f_{\mathrm{x}} \mathrm{M}=\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{L^{2}}
$$

ex $50.05492 \mathrm{kN}^{*} \mathrm{~m}=\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{(4170 \mathrm{~mm})^{2}}$
17) Momento d'inerzia dato Deflessione in Leaf Spring
$f \mathbf{x}=\frac{M \cdot L^{2}}{8 \cdot E \cdot \delta}$
Apri Calcolatrice
ex $0.002158 \mathrm{~m}^{4}=\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 3.4 \mathrm{~mm}}$

Per trave caricata centralmente
18) Carico dato Flessione nella molla a balestra
$f_{\mathbf{x}} \mathrm{W}_{\text {load }}=\frac{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}{3 \cdot \mathrm{~L}^{3}}$
Apri Calcolatrice
ex $84.87939 \mathrm{~N}=\frac{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}{3 \cdot(4170 \mathrm{~mm})^{3}}$
19) Deflessione nella molla a balestra dato il carico
$\mathrm{fx}_{\mathrm{x}} \delta_{\text {Leaf }}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Apri Calcolatrice
ex $494.702 \mathrm{~mm}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
20) Larghezza data Deflessione in Leaf Spring
$f \times \mathrm{b}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3}}$
Apri Calcolatrice
ex $300.4263 \mathrm{~mm}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3}}$

开
21) Modulo di elasticità della molla a balestra data la deflessione
$\mathrm{fx} \mathrm{E}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\mathrm{Leaf}} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Apri Calcolatrice
ex $20028.42 \mathrm{MPa}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
22) Numero di piastre fornite Deflessione in Leaf Spring
$\mathrm{fx}_{\mathrm{x}}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Apri Calcolatrice
ex $8.011368=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
23) Spessore dato Deflessione nella balestra
$\mathrm{fx} t=\left(\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b}}\right)^{\frac{1}{3}}$
Apri Calcolatrice
ex $460.2178 \mathrm{~mm}=\left(\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm}}\right)^{\frac{1}{3}}$

Variabili utilizzate

- b Larghezza della sezione trasversale (Millimetro)
- d Diametro della primavera (Millimetro)
- E Modulo di Young (Megapascal)
- $\mathbf{G}_{\text {Torsion }}$ Modulo di rigidità (Gigapascal)
- I Momento d'inerzia dell'area (Metro ^ 4)
- L Durata in primavera (Millimetro)
- M Momento flettente (Kilonewton metro)
- \mathbf{n} Numero di piastre
- \mathbf{N} Numero di bobine
- R Raggio medio (Millimetro)
- t Spessore della sezione (Millimetro)
- Wload Carico a molla (Newton)
- $\bar{\delta}$ Deviazione della primavera (Millimetro)
- $\delta_{\text {Leaf }}$ Deflessione della molla a balestra (Millimetro)

Costanti, Funzioni, Misure utilizzate

- Funzione: sqrt, sqrt(Number)

Square root function

- Misurazione: Lunghezza in Millimetro (mm)

Lunghezza Conversione unità

- Misurazione: Pressione in Gigapascal (GPa)

Pressione Conversione unità

- Misurazione: Forza in Newton (N)

Forza Conversione unità

- Misurazione: Momento di forza in Kilonewton metro (kN*m)

Momento di forza Conversione unità \longleftarrow

- Misurazione: Secondo momento di area in Metro ${ }^{\wedge} 4\left(\mathrm{~m}^{4}\right)$

Secondo momento di area Conversione unità

- Misurazione: Fatica in Megapascal (MPa)

Fatica Conversione unità

Controlla altri elenchi di formule

- Deviazione in primavera Formule

Sentitit libero di CONDIVIDERE questo documento con i tuoi amici!

PDF Disponibile in

English Spanish French German Russian Italian Portuguese Polish Dutch

